ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust in the diffuse interstellar medium: Extinction, emission, linear and circular polarisation

296   0   0.0 ( 0 )
 نشر من قبل Ralf Siebenmorgen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model for the diffuse interstellar dust that explains the observed wavelength-dependence of extinction, emission, linear and circular polarisation of light. The model is set-up with a small number of parameters. It consists of a mixture of amorphous carbon and silicate grains with sizes from the molecular domain of 0.5 up to about 500nm. Dust grains with radii larger than 6nm are spheroids. Spheroidal dust particles have a factor 1.5 - 3 larger absorption cross section in the far IR than spherical grains of the same volume. Mass estimates derived from submillimeter observations that ignore this effect are overestimated by the same amount. In the presence of a magnetic field, spheroids may be partly aligned and polarise light. We find that polarisation spectra help to determine the upper particle radius of the otherwise rather unconstrained dust size distribution. Stochastically heated small grains of graphite, silicates and polycyclic aromatic hydrocarbons (PAHs) are included. We tabulate parameters for PAH emission bands in various environments. They show a trend with the hardness of the radiation field that can be explained by the ionisation state or hydrogenation coverage of the molecules. For each dust component its relative weight is specified, so that absolute element abundances are not direct input parameters. The model is confronted with the average properties of the Milky Way, which seems to represent dust in the solar neighbourhood. It is then applied to four specific sight lines including the reflection nebula NGC2023. For these sight lines, we present linear and circular spectro-polarimetric observations obtained with FORS/VLT. Using prolate rather than oblate grains gives a better fit to observed spectra; the axial ratio of the spheroids is typically two and aligned silicates are the dominant contributor to the polarisation.



قيم البحث

اقرأ أيضاً

132 - O. Berne , N. L. J. Cox , G. Mulas 2017
Emission of fullerenes in their infrared vibrational bands has been detected in space near hot stars. The proposed attribution of the diffuse interstellar bands at 9577 and 9632 AA to electronic transitions of the buckminsterfullerene cation (i.e. C$ _{60}^+$ ) was recently supported by new laboratory data, confirming the presence of this species in the diffuse interstellar medium (ISM). In this letter, we present the detection, also in the diffuse ISM, of the 17.4 and 18.9 $mu$m emission bands commonly attributed to vibrational bands of neutral C$_{60}$. According to classical models that compute the charge state of large molecules in space, C$_{60}$ is expected to be mostly neutral in the diffuse ISM. This is in agreement with the abundances of diffuse C$_{60}$ we derive here from observations.
We study infrared emission of 17 isolated, diffuse clouds with masses of order solar masses, to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from WISE data and directly compared to the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by extinction of starlight within the clouds. The relative amounts of PAH and very small grains traced by WISE, compared to large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus the low gas-to-dust ratios in the clouds are most likely due to `dark gas that is molecular hydrogen.
This paper presents the first results of comparison of Planck along with IRAS data with Green Bank Telescope 21-cm observations in 14 fields covering more than 800 square degrees at high Galactic latitude. Galactic dust emission for fields with avera ge HI column density lower than 2 x 10^20 cm^-2 is well correlated with 21-cm emission. The residual emission in these fields, once the HI-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. Fields with larger column densities show significant excess dust emission compared to the HI column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. Dust emission from intermediate-velocity clouds is detected with high significance. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T~20 K), lower sub-millimeter dust opacity, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000 GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes.
Ionized carbon is the main gas-phase reservoir of carbon in the neutral diffuse interstellar medium and its 158 micron fine structure transition [CII] is the most important cooling line of the diffuse interstellar medium (ISM). We combine [CII] absor ption and emission spectroscopy to gain an improved understanding of physical conditions in the different phases of the ISM. We present high resolution [CII] spectra obtained with the Herschel/HIFI instrument towards bright dust continuum sources regions in the Galactic plane, probing simultaneously the diffuse gas along the line of sight and the background high-mass star forming regions. These data are complemented by observations of the 492 and 809 GHz fine structure lines of atomic carbon and by medium spectral resolution spectral maps of the fine structure lines of atomic oxygen at 63 and 145 microns with Herschel/PACS. We show that the presence of foreground absorption may completely cancel the emission from the background source in medium spectral resolution data and that high spectral resolution spectra are needed to interpret the [CII] and [OI] emission and the [CII]/FIR ratio. This phenomenon may explain part of the [CII]/FIR deficit seen in external luminous infrared galaxies. The C+ and C excitation in the diffuse gas is consistent with a median pressure of 5900 Kcm-3 for a mean TK ~100 K. The knowledge of the gas density allows us to determine the filling factor of the absorbing gas along the selected lines of sight: the median value is 2.4 %, in good agreement with the CNM properties. The mean excitation temperature is used to derive the average cooling due to C+ in the Galactic plane : 9.5 x 10^{-26} erg/s/H. Along the observed lines of sight, the gas phase carbon abundance does not exhibit a strong gradient as a function of Galacto-centric radius and has a weighted average of C/H = 1.5 +/- 0.4 x 10^{-4}.
Whether ice in cold cosmic environments is physically separated from the silicate dust or mixed with individual silicate moieties is not known. However, different grain models give very different compositions and temperatures of grains. The aim of th e present study is a comparison of the mid-IR spectra of laboratory silicate-grains/water-ice mixtures with astronomical observations to evaluate the presence of dust/ice mixtures in interstellar and circumstellar environments. The laboratory data can explain the observations assuming reasonable mass-averaged temperatures for the protostellar envelopes and protoplanetary disks demonstrating that a substantial fraction of water ice may be mixed with silicate grains. Based on the combination of laboratory data and infrared observations, we provide evidence of the presence of solid-state water in the diffuse interstellar medium. Our results have implications for future laboratory studies trying to investigate cosmic dust grain analogues and for future observations trying to identify the structure, composition, and temperature of grains in different astrophysical environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا