ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmonically enhanced mid-IR light source based on tunable spectrally and directionally selective thermal emission from nanopatterned graphene

60   0   0.0 ( 0 )
 نشر من قبل Michael N. Leuenberger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to $3000$ cm$^2$V$^{-1}$s$^{-1}$), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet allow for the control and tuning of the thermal emission spectrum in the wavelength regime from 3 $mu$m to 12 $mu$m. The LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared (NIR) by a factor of 100. A maximum emission power per area of 11x10^3 W/m$^2$ at $T=2000$ K for a bias voltage of $V=23$ V is achieved by Joule heating. By generalizing Plancks theory and considering the nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in graphene in RPA, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13 $mu$m and 150 $mu$m, respectively, providing the opportunity to create phased arrays. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between $12^circ$ and $80^circ$ by tuning the Fermi energy. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain (FDTD) calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.



قيم البحث

اقرأ أيضاً

We present the model of an ultrasensitive mid-infrared (mid-IR) photodetector operating in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) domains consisting of a hybrid heterostructure made of nanopatterned graphene (NPG) and vanadium dioxide (VO$_2$) which exhibits a large responsivity of $Rsim 10^4$ V/W, a detectivity exceeding $D^*sim 10^{10}$ J, and a sensitivity in terms of noise-equivalent power $mathrm{NEP}sim 100$ fW/$sqrt{rm Hz}$ close to room temperature by taking advantage of the phase change of a thin VO$_2$ film. Our proposed photodetector can reach an absorption of nearly 100% in monolayer graphene due to localized surface plasmons (LSPs) around the patterned circular holes. The geometry of the nanopattern and an electrostatic gate potential can be used to tune the absorption peak in the mid-IR regime between 3 and 12 $mu$m. After the photon absorption by the NPG sheet and the resulting phase change of VO$_2$ from insulating to metallic phase the applied bias voltage $V_b$ triggers a current through the VO$_2$ sheet, which can be detected electronically in about 1 ms, shorter than the detection times of current VO$_2$ bolometers. Our envisioned mid-IR photodetector reaches detectivities of cryogenically cooled HgCdTe photodetectors and sensitivities larger than VO$_2$ microbolometers while operating close to room temperature.
Enhancing light-matter interaction by exciting Dirac plasmons on nanopatterned monolayer graphene is an efficient route to achieve high infrared absorption. Here, we designed and fabricated the hexagonal planar arrays of nanohole and nanodisk with an d without optical cavity to excite Dirac plasmons on the patterned graphene and investigated the role of plasmon lifetime, extinction cross-section, incident light polarization, the angle of incident of light and pattern dimensions on the light absorption spectra.
Silver nanoparticles dispersed on the surface of an inverted GaN LED were found to plasmonically enhance the near-bandedge emission. The resonant surface plasmon coupling led to a significant enhancement in the exciton decay rate and the ensemble of nanoparticles provided a mechanism to scatter the coupled energy as free space radiation. The inverted LED structure employed a tunnel junction to avoid the standard thick p+ GaN current spreading contact layer. In contrast to a standard design, the top contact was a thin n++ AlGaN layer, which brought the quantum well into the fringing field of the silver nanoparticles. This proximity allowed the excitons induced within the quantum well to couple to the surface plasmons, which in turn led to the enhanced band edge emission from the LED.
A residual disorder in the gate system is the main problem on the way to create artificial graphene based on two-dimensional electron gas. The disorder can be significantly screened/reduced due to the many-body effects. To analyse the screening/disor der problem we consider AlGaAs/GaAs/AlGaAs heterostructure with two metallic gates. We demonstrate that the design least susceptible to the disorder corresponds to the weak coupling regime (opposite to tight binding) which is realised via system of quantum anti-dots. The most relevant type of disorder is the area disorder which is a random variation of areas of quantum anti-dots. The area disorder results in formation of puddles. Other types of disorder, the position disorder and the shape disorder, are practically irrelevant. The formation/importance of puddles dramatically depends on parameters of the nanopatterned heterostructure. A variation of the parameters by 20--30% can change the relative amplitude of puddles by orders of magnitude. Based on this analysis we formulate criteria for the acceptable design of the heterostructure aimed at creation of the artificial graphene.
Graphene is an ideal material for integrated nonlinear optics thanks to its strong light-matter interaction and large nonlinear optical susceptibility. Graphene has been used in optical modulators, saturable absorbers, nonlinear frequency converters, and broadband light emitters. For the latter application, a key requirement is the ability to control and engineer the emission wavelength and bandwidth, as well as the electronic temperature of graphene. Here, we demonstrate that the emission wavelength of graphene$$ s broadband hot carrier photoluminescence can be tuned by integration on photonic cavities, while thermal management can be achieved by out-of-plane heat transfer to hexagonal boron nitride. Our results pave the way to graphene-based ultrafast broadband light emitters with tunable emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا