ﻻ يوجد ملخص باللغة العربية
A residual disorder in the gate system is the main problem on the way to create artificial graphene based on two-dimensional electron gas. The disorder can be significantly screened/reduced due to the many-body effects. To analyse the screening/disorder problem we consider AlGaAs/GaAs/AlGaAs heterostructure with two metallic gates. We demonstrate that the design least susceptible to the disorder corresponds to the weak coupling regime (opposite to tight binding) which is realised via system of quantum anti-dots. The most relevant type of disorder is the area disorder which is a random variation of areas of quantum anti-dots. The area disorder results in formation of puddles. Other types of disorder, the position disorder and the shape disorder, are practically irrelevant. The formation/importance of puddles dramatically depends on parameters of the nanopatterned heterostructure. A variation of the parameters by 20--30% can change the relative amplitude of puddles by orders of magnitude. Based on this analysis we formulate criteria for the acceptable design of the heterostructure aimed at creation of the artificial graphene.
Electromagnetic fields bound tightly to charge carriers in a two-dimensional sheet, namely surface plasmons, are shielded by metallic plates that are a part of a device. It is shown that for epitaxial graphenes, the propagation velocity of surface pl
We study the transport of charge carriers through finite graphene structures. The use of numerical exact kernel polynomial and Green function techniques allows us to treat actual sized samples beyond the Dirac-cone approximation. Particularly we inve
Majorana zero modes in a superconductor-semiconductor nanowire have been extensively studied during the past decade. Disorder remains a serious problem, preventing the definitive observation of topological Majorana bound states. Thus, it is worthwhil
We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to $3000$ cm$^2$V$^{-1}$s$^{-1}$), ensuring scalability to large areas. For that, w
Flat bands near M points in the Brillouin zone are key features of honeycomb symmetry in artificial graphene (AG) where electrons may condense into novel correlated phases. Here we report the observation of van Hove singularity doublet of AG in GaAs