ترغب بنشر مسار تعليمي؟ اضغط هنا

Faster, Simpler and More Accurate Hybrid ASR Systems Using Wordpieces

96   0   0.0 ( 0 )
 نشر من قبل Frank Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we first show that on the widely used LibriSpeech benchmark, our transformer-based context-dependent connectionist temporal classification (CTC) system produces state-of-the-art results. We then show that using wordpieces as modeling units combined with CTC training, we can greatly simplify the engineering pipeline compared to conventional frame-based cross-entropy training by excluding all the GMM bootstrapping, decision tree building and force alignment steps, while still achieving very competitive word-error-rate. Additionally, using wordpieces as modeling units can significantly improve runtime efficiency since we can use larger stride without losing accuracy. We further confirm these findings on two internal VideoASR datasets: German, which is similar to English as a fusional language, and Turkish, which is an agglutinative language.



قيم البحث

اقرأ أيضاً

In this paper, we present a series of complementary approaches to improve the recognition of underrepresented named entities (NE) in hybrid ASR systems without compromising overall word error rate performance. The underrepresented words correspond to rare or out-of-vocabulary (OOV) words in the training data, and thereby cant be modeled reliably. We begin with graphemic lexicon which allows to drop the necessity of phonetic models in hybrid ASR. We study it under different settings and demonstrate its effectiveness in dealing with underrepresented NEs. Next, we study the impact of neural language model (LM) with letter-based features derived to handle infrequent words. After that, we attempt to enrich representations of underrepresented NEs in pretrained neural LM by borrowing the embedding representations of rich-represented words. This let us gain significant performance improvement on underrepresented NE recognition. Finally, we boost the likelihood scores of utterances containing NEs in the word lattices rescored by neural LMs and gain further performance improvement. The combination of the aforementioned approaches improves NE recognition by up to 42% relatively.
This paper presents our modeling and architecture approaches for building a highly accurate low-latency language identification system to support multilingual spoken queries for voice assistants. A common approach to solve multilingual speech recogni tion is to run multiple monolingual ASR systems in parallel and rely on a language identification (LID) component that detects the input language. Conventionally, LID relies on acoustic only information to detect input language. We propose an approach that learns and combines acoustic level representations with embeddings estimated on ASR hypotheses resulting in up to 50% relative reduction of identification error rate, compared to a model that uses acoustic only features. Furthermore, to reduce the processing cost and latency, we exploit a streaming architecture to identify the spoken language early when the system reaches a predetermined confidence level, alleviating the need to run multiple ASR systems until the end of input query. The combined acoustic and text LID, coupled with our proposed streaming runtime architecture, results in an average of 1500ms early identification for more than 50% of utterances, with almost no degradation in accuracy. We also show improved results by adopting a semi-supervised learning (SSL) technique using the newly proposed model architecture as a teacher model.
Automatic speech recognition systems have been largely improved in the past few decades and current systems are mainly hybrid-based and end-to-end-based. The recently proposed CTC-CRF framework inherits the data-efficiency of the hybrid approach and the simplicity of the end-to-end approach. In this paper, we further advance CTC-CRF based ASR technique with explorations on modeling units and neural architectures. Specifically, we investigate techniques to enable the recently developed wordpiece modeling units and Conformer neural networks to be succesfully applied in CTC-CRFs. Experiments are conducted on two English datasets (Switchboard, Librispeech) and a German dataset from CommonVoice. Experimental results suggest that (i) Conformer can improve the recognition performance significantly; (ii) Wordpiece-based systems perform slightly worse compared with phone-based systems for the target language with a low degree of grapheme-phoneme correspondence (e.g. English), while the two systems can perform equally strong when such degree of correspondence is high for the target language (e.g. German).
Building Automatic Speech Recognition (ASR) systems from scratch is significantly challenging, mostly due to the time-consuming and financially-expensive process of annotating a large amount of audio data with transcripts. Although several unsupervis ed pre-training models have been proposed, applying such models directly might still be sub-optimal if more labeled, training data could be obtained without a large cost. In this paper, we present a weakly supervised framework for constructing ASR systems with massive video data. As videos often contain human-speech audios aligned with subtitles, we consider videos as an important knowledge source, and propose an effective approach to extract high-quality audios aligned with transcripts from videos based on Optical Character Recognition (OCR). The underlying ASR model can be fine-tuned to fit any domain-specific target training datasets after weakly supervised pre-training. Extensive experiments show that our framework can easily produce state-of-the-art results on six public datasets for Mandarin speech recognition.
Multilingual ASR technology simplifies model training and deployment, but its accuracy is known to depend on the availability of language information at runtime. Since language identity is seldom known beforehand in real-world scenarios, it must be i nferred on-the-fly with minimum latency. Furthermore, in voice-activated smart assistant systems, language identity is also required for downstream processing of ASR output. In this paper, we introduce streaming, end-to-end, bilingual systems that perform both ASR and language identification (LID) using the recurrent neural network transducer (RNN-T) architecture. On the input side, embeddings from pretrained acoustic-only LID classifiers are used to guide RNN-T training and inference, while on the output side, language targets are jointly modeled with ASR targets. The proposed method is applied to two language pairs: English-Spanish as spoken in the United States, and English-Hindi as spoken in India. Experiments show that for English-Spanish, the bilingual joint ASR-LID architecture matches monolingual ASR and acoustic-only LID accuracies. For the more challenging (owing to within-utterance code switching) case of English-Hindi, English ASR and LID metrics show degradation. Overall, in scenarios where users switch dynamically between languages, the proposed architecture offers a promising simplification over running multiple monolingual ASR models and an LID classifier in parallel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا