ﻻ يوجد ملخص باللغة العربية
Let $R$ be a commutative unitary ring. An idempotent in $R$ is an element $ein R$ with $e^2=e$. The ErdH{o}s-Burgess constant associated with the ring $R$ is the smallest positive integer $ell$ (if exists) such that for any given $ell$ elements (not necessarily distinct) of $R$, say $a_1,ldots,a_{ell}in R$, there must exist a nonempty subset $Jsubset {1,2,ldots,ell}$ with $prodlimits_{jin J} a_j$ being an idempotent. In this paper, we prove that except for an infinite commutative ring with a very special form, the ErdH{o}s-Burgess constant of the ring $R$ exists if and only if $R$ is finite.
Given $E subseteq mathbb{F}_q^d times mathbb{F}_q^d$, with the finite field $mathbb{F}_q$ of order $q$ and the integer $d ge 2$, we define the two-parameter distance set as $Delta_{d, d}(E)=left{left(|x_1-y_1|, |x_2-y_2|right) : (x_1,x_2), (y_1,y_2)
In this paper we obtain a new lower bound on the ErdH{o}s distinct distances problem in the plane over prime fields. More precisely, we show that for any set $Asubset mathbb{F}_p^2$ with $|A|le p^{7/6}$, the number of distinct distances determined by
In 1935, ErdH{o}s and Szekeres proved that $(m-1)(k-1)+1$ is the minimum number of points in the plane which definitely contain an increasing subset of $m$ points or a decreasing subset of $k$ points (as ordered by their $x$-coordinates). We consider
Robertson and Seymour proved that the family of all graphs containing a fixed graph $H$ as a minor has the ErdH{o}s-Posa property if and only if $H$ is planar. We show that this is no longer true for the edge version of the ErdH{o}s-Posa property, an
The triangle covering number of a graph is the minimum number of vertices that hit all triangles. Given positive integers $s,t$ and an $n$-vertex graph $G$ with $lfloor n^2/4 rfloor +t$ edges and triangle covering number $s$, we determine (for large