ﻻ يوجد ملخص باللغة العربية
Consider the coupon collector problem where each box of a brand of cereal contains a coupon and there are n different types of coupons. Suppose that the probability of a box containing a coupon of a specific type is $1/n$ and that we keep buying boxes until we collect at least $m$ coupons of each type. For $kgeq m$ call a certain coupon a $k$-ton if we see it $k$ times by the time we have seen $m$ copies of all of the coupons. Here we determine the asymptotic distribution of the number of $k$-tons after we have collected $m$ copies of each coupon for any $k$ in a restricted range, given any fixed $m$. We also determine the asymptotic joint probability distribution over such values of $k$ and the total number of coupons collected.
We study how efficiently a $k$-element set $Ssubseteq[n]$ can be learned from a uniform superposition $|Srangle$ of its elements. One can think of $|Srangle=sum_{iin S}|irangle/sqrt{|S|}$ as the quantum version of a uniformly random sample over $S$,
The solution of the classical Coupon Collectors Problem is based on the assumptions that all stickers are independently and uniformly distributed. We can prove statistically as well as analytically that in particular the assumption of independence is
This paper focuses on the Coupon Collectors Problem with replacement (limited purchasing of missing stickers) and swapping. We have simulated combined strategies and found new results, which we were able to prove for a particular case. The ratio of t
The Coupon Collectors Problem is one of the few mathematical problems that make news headlines regularly. The reasons for this are on one hand the immense popularity of soccer albums (called Paninimania) and on the other hand that no solution is know
This paper investigates sufficient conditions for a Feynman-Kac functional up to an exit time to be the generalized viscosity solution of a Dirichlet problem. The key ingredient is to find out the continuity of exit operator under Skorokhod topology,