ﻻ يوجد ملخص باللغة العربية
Facial landmark detection has been studied over decades. Numerous neural network (NN)-based approaches have been proposed for detecting landmarks, especially the convolutional neural network (CNN)-based approaches. In general, CNN-based approaches can be divided into regression and heatmap approaches. However, no research systematically studies the characteristics of different approaches. In this paper, we investigate both CNN-based approaches, generalize their advantages and disadvantages, and introduce a variation of the heatmap approach, a pixel-wise classification (PWC) model. To the best of our knowledge, using the PWC model to detect facial landmarks have not been comprehensively studied. We further design a hybrid loss function and a discrimination network for strengthening the landmarks interrelationship implied in the PWC model to improve the detection accuracy without modifying the original model architecture. Six common facial landmark datasets, AFW, Helen, LFPW, 300-W, IBUG, and COFW are adopted to train or evaluate our model. A comprehensive evaluation is conducted and the result shows that the proposed model outperforms other models in all tested datasets.
In this work, we use facial landmarks to make the deformation for facial images more authentic. The deformation includes the expansion of eyes and the shrinking of noses, mouths, and cheeks. An advanced 106-point facial landmark detector is utilized
In recent years, significant progress has been made in the research of facial landmark detection. However, few prior works have thoroughly discussed about models for practical applications. Instead, they often focus on improving a couple of issues at
Fetal alcohol syndrome (FAS) caused by prenatal alcohol exposure can result in a series of cranio-facial anomalies, and behavioral and neurocognitive problems. Current diagnosis of FAS is typically done by identifying a set of facial characteristics,
Recently, deep learning based facial landmark detection has achieved great success. Despite this, we notice that the semantic ambiguity greatly degrades the detection performance. Specifically, the semantic ambiguity means that some landmarks (e.g. t
Although heatmap regression is considered a state-of-the-art method to locate facial landmarks, it suffers from huge spatial complexity and is prone to quantization error. To address this, we propose a novel attentive one-dimensional heatmap regressi