ﻻ يوجد ملخص باللغة العربية
Sequences of nucleotides (for DNA and RNA) or amino acids (for proteins) are central objects in biology. Among the most important computational problems is that of sequence alignment, i.e. arranging sequences from different organisms in such a way to identify similar regions, to detect evolutionary relationships between sequences, and to predict biomolecular structure and function. This is typically addressed through profile models, which capture position-specificities like conservation in sequences, but assume an independent evolution of different positions. Over the last years, it has been well established that coevolution of different amino-acid positions is essential for maintaining three-dimensional structure and function. Modeling approaches based on inverse statistical physics can catch the coevolution signal in sequence ensembles; and they are now widely used in predicting protein structure, protein-protein interactions, and mutational landscapes. Here, we present DCAlign, an efficient alignment algorithm based on an approximate message-passing strategy, which is able to overcome the limitations of profile models, to include coevolution among positions in a general way, and to be therefore universally applicable to protein- and RNA-sequence alignment without the need of using complementary structural information. The potential of DCAlign is carefully explored using well-controlled simulated data, as well as real protein and RNA sequences.
Boltzmann machines are energy-based models that have been shown to provide an accurate statistical description of domains of evolutionary-related protein and RNA families. They are parametrized in terms of local biases accounting for residue conserva
Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extende
Surface-enhanced Raman spectroscopy (SERS) is a sensitive label-free optical method that can provide fingerprint Raman spectra of biomolecules such as DNA, amino acids and proteins. While SERS of single DNA molecule has been recently demonstrated, Ra
The rapidly developing theory of complex networks indicates that real networks are not random, but have a highly robust large-scale architecture, governed by strict organizational principles. Here, we focus on the properties of biological networks, d
In systems biology modeling, important steps include model parameterization, uncertainty quantification, and evaluation of agreement with experimental observations. To help modelers perform these steps, we developed the software PyBioNetFit. PyBioNet