ﻻ يوجد ملخص باللغة العربية
Surface-enhanced Raman spectroscopy (SERS) is a sensitive label-free optical method that can provide fingerprint Raman spectra of biomolecules such as DNA, amino acids and proteins. While SERS of single DNA molecule has been recently demonstrated, Raman analysis of single protein sequence was not possible because the SERS spectra of proteins are usually dominated by signals of aromatic amino acid residues. Here, we used electroplasmonic approach to trap single gold nanoparticle in a nanohole for generating a plasmonic nanocavity between the trapped nanoparticle and the nanopore wall. The giant field generated in the nanocavity was so sensitive and localized that it enables SERS discrimination of 10 distinct amino acids at single-molecule level. The obtained spectra are used to analyze the spectra of 2 biomarkers (Vasopressin and Oxytocin) made of a short sequence of 9 amino-acids. Significantly, we demonstrated identification of single non-aromatic amino acid residues in a single short peptide chain as well as discrimination between two peptides with sequences distinguishable in 2 specific amino-acids. Our result demonstrate the high sensitivity of our method to identify single amino acid residue in a protein chain and a potential for further applications in proteomics and single-protein sequencing.
The twenty protein coding amino acids are found in proteomes with different relative abundances. The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the least abundant amino acid, cysteine. Amino acid metabolic
The correlations of primary and secondary structures were analyzed using proteins with known structure from Protein Data Bank. The correlation values of amino acid type and the eight secondary structure types at distant position were calculated for d
The amino acid sequences of proteins provide rich information for inferring distant phylogenetic relationships and for predicting protein functions. Estimating the rate matrix of residue substitutions from amino acid sequences is also important becau
In this work it is shown that 20 canonical amino acids (AAs) within genetic code appear to be a whole system with strict AAs positions; more exactly, with AAs ordinal number in three variants; first variant 00-19, second 00-21 and third 00-20. The or
Sequences of nucleotides (for DNA and RNA) or amino acids (for proteins) are central objects in biology. Among the most important computational problems is that of sequence alignment, i.e. arranging sequences from different organisms in such a way to