ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning-based Prediction, Rendering and Association Optimization for MEC-enabled Wireless Virtual Reality (VR) Network

121   0   0.0 ( 0 )
 نشر من قبل Xiaonan Liu
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless-connected Virtual Reality (VR) provides immersive experience for VR users from any-where at anytime. However, providing wireless VR users with seamless connectivity and real-time VR video with high quality is challenging due to its requirements in high Quality of Experience (QoE) and low VR interaction latency under limited computation capability of VR device. To address these issues,we propose a MEC-enabled wireless VR network, where the field of view (FoV) of each VR user can be real-time predicted using Recurrent Neural Network (RNN), and the rendering of VR content is moved from VR device to MEC server with rendering model migration capability. Taking into account the geographical and FoV request correlation, we propose centralized and distributed decoupled Deep Reinforcement Learning (DRL) strategies to maximize the long-term QoE of VR users under the VR interaction latency constraint. Simulation results show that our proposed MEC rendering schemes and DRL algorithms substantially improve the long-term QoE of VR users and reduce the VR interaction latency compared to rendering at VR devices



قيم البحث

اقرأ أيضاً

Wireless Virtual Reality (VR) users are able to enjoy immersive experience from anywhere at anytime. However, providing full spherical VR video with high quality under limited VR interaction latency is challenging. If the viewpoint of the VR user can be predicted in advance, only the required viewpoint is needed to be rendered and delivered, which can reduce the VR interaction latency. Therefore, in this paper, we use offline and online learning algorithms to predict viewpoint of the VR user using real VR dataset. For the offline learning algorithm, the trained learning model is directly used to predict the viewpoint of VR users in continuous time slots. While for the online learning algorithm, based on the VR users actual viewpoint delivered through uplink transmission, we compare it with the predicted viewpoint and update the parameters of the online learning algorithm to further improve the prediction accuracy. To guarantee the reliability of the uplink transmission, we integrate the Proactive retransmission scheme into our proposed online learning algorithm. Simulation results show that our proposed online learning algorithm for uplink wireless VR network with the proactive retransmission scheme only exhibits about 5% prediction error.
The quality of experience (QoE) requirements of wireless Virtual Reality (VR) can only be satisfied with high data rate, high reliability, and low VR interaction latency. This high data rate over short transmission distances may be achieved via abund ant bandwidth in the terahertz (THz) band. However, THz waves suffer from severe signal attenuation, which may be compensated by the reconfigurable intelligent surface (RIS) technology with programmable reflecting elements. Meanwhile, the low VR interaction latency may be achieved with the mobile edge computing (MEC) network architecture due to its high computation capability. Motivated by these considerations, in this paper, we propose a MEC-enabled and RIS-assisted THz VR network in an indoor scenario, by taking into account the uplink viewpoint prediction and position transmission, MEC rendering, and downlink transmission. We propose two methods, which are referred to as centralized online Gated Recurrent Unit (GRU) and distributed Federated Averaging (FedAvg), to predict the viewpoints of VR users. In the uplink, an algorithm that integrates online Long-short Term Memory (LSTM) and Convolutional Neural Networks (CNN) is deployed to predict the locations and the line-of-sight and non-line-of-sight statuses of the VR users over time. In the downlink, we further develop a constrained deep reinforcement learning algorithm to select the optimal phase shifts of the RIS under latency constraints. Simulation results show that our proposed learning architecture achieves near-optimal QoE as that of the genie-aided benchmark algorithm, and about two times improvement in QoE compared to the random phase shift selection scheme.
Cellular-connected wireless connectivity provides new opportunities for virtual reality(VR) to offer seamless user experience from anywhere at anytime. To realize this vision, the quality-of-service (QoS) for wireless VR needs to be carefully defined to reflect human perception requirements. In this paper, we first identify the primary drivers of VR systems, in terms of applications and use cases. We then map the human perception requirements to corresponding QoS requirements for four phases of VR technology development. To shed light on how to provide short/long-range mobility for VR services, we further list four main use cases for cellular-connected wireless VR and identify their unique research challenges along with their corresponding enabling technologies and solutions in 5G systems and beyond. Last but not least, we present a case study to demonstrate the effectiveness of our proposed solution and the unique QoS performance requirements of VR transmission compared with that of traditional video service in cellular networks.
Mobile edge learning is an emerging technique that enables distributed edge devices to collaborate in training shared machine learning models by exploiting their local data samples and communication and computation resources. To deal with the straggl er dilemma issue faced in this technique, this paper proposes a new device to device enabled data sharing approach, in which different edge devices share their data samples among each other over communication links, in order to properly adjust their computation loads for increasing the training speed. Under this setup, we optimize the radio resource allocation for both data sharing and distributed training, with the objective of minimizing the total training delay under fixed numbers of local and global iterations. Numerical results show that the proposed data sharing design significantly reduces the training delay, and also enhances the training accuracy when the data samples are non independent and identically distributed among edge devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا