ﻻ يوجد ملخص باللغة العربية
Wireless-connected Virtual Reality (VR) provides immersive experience for VR users from any-where at anytime. However, providing wireless VR users with seamless connectivity and real-time VR video with high quality is challenging due to its requirements in high Quality of Experience (QoE) and low VR interaction latency under limited computation capability of VR device. To address these issues,we propose a MEC-enabled wireless VR network, where the field of view (FoV) of each VR user can be real-time predicted using Recurrent Neural Network (RNN), and the rendering of VR content is moved from VR device to MEC server with rendering model migration capability. Taking into account the geographical and FoV request correlation, we propose centralized and distributed decoupled Deep Reinforcement Learning (DRL) strategies to maximize the long-term QoE of VR users under the VR interaction latency constraint. Simulation results show that our proposed MEC rendering schemes and DRL algorithms substantially improve the long-term QoE of VR users and reduce the VR interaction latency compared to rendering at VR devices
Wireless Virtual Reality (VR) users are able to enjoy immersive experience from anywhere at anytime. However, providing full spherical VR video with high quality under limited VR interaction latency is challenging. If the viewpoint of the VR user can
The quality of experience (QoE) requirements of wireless Virtual Reality (VR) can only be satisfied with high data rate, high reliability, and low VR interaction latency. This high data rate over short transmission distances may be achieved via abund
Cellular-connected wireless connectivity provides new opportunities for virtual reality(VR) to offer seamless user experience from anywhere at anytime. To realize this vision, the quality-of-service (QoS) for wireless VR needs to be carefully defined
This letter studies an unmanned aerial vehicle-enabled wireless power transfer system within a radio-map-based robust positioning design.
Mobile edge learning is an emerging technique that enables distributed edge devices to collaborate in training shared machine learning models by exploiting their local data samples and communication and computation resources. To deal with the straggl