ﻻ يوجد ملخص باللغة العربية
We investigate the validity of the generalized second law of thermodynamics, applying Barrow entropy for the horizon entropy. The former arises from the fact that the black-hole surface may be deformed due to quantum-gravitational effects, quantified by a new exponent $Delta$. We calculate the entropy time-variation in a universe filled with the matter and dark energy fluids, as well as the corresponding quantity for the apparent horizon. We show that although in the case $Delta=0$, which corresponds to usual entropy, the sum of the entropy enclosed by the apparent horizon plus the entropy of the horizon itself is always a non-decreasing function of time and thus the generalized second law of thermodynamics is valid, in the case of Barrow entropy this is not true anymore, and the generalized second law of thermodynamics may be violated, depending on the universe evolution. Hence, in order not to have violation, the deformation from standard Bekenstein-Hawking expression should be small as expected.
We present modified cosmological scenarios that arise from the application of the gravity-thermodynamics conjecture, using the Barrow entropy instead of the usual Bekenstein-Hawking one. The former is a modification of the black hole entropy due to q
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on the exponent of Barrow entropy. The latter is an extended entropy relation arising from the incorporation of quantum-gravitational effects on the black-hole structure, param
The well known connection between black holes and thermodynamics, as well as their basic statistical mechanics, has been explored during the last decades since the published papers by Hawking, Jacobson and Unruh. In this work we have investigated the
Within the context of scalar-tensor gravity, we explore the generalized second law (GSL) of gravitational thermodynamics. We extend the action of ordinary scalar-tensor gravity theory to the case in which there is a non-minimal coupling between the s
The accretion of a phantom fluid with non-zero chemical potential by black holes is discussed with basis on the Generalized Second Law of thermodynamics. For phantom fluids with positive temperature and negative chemical potential we demonstrate that