ﻻ يوجد ملخص باللغة العربية
The physical evolution of Young Stellar Objects (YSOs) is accompanied by an enrichment of the molecular complexity, mainly triggered by the heating and energetic processing of the astrophysical ices. In this paper, a study of how the ice column density varies across the protostellar evolution has been performed. Tabulated data of H$_2$O, CO$_2$, CH$_3$OH, HCOOH observed by ground- and space-based telescopes toward 27 early-stage YSOs were taken from the literature. The observational data shows that ice column density and spectral index ($alpha$), used to classify the evolutionary stage, are well correlated. A 2D continuum radiative transfer simulation containing bare and grains covered by ices at different levels of cosmic-ray processing were used to calculate the Spectral Energy Distributions (SEDs) in different angle inclinations between face-on and edge-on configuration. The H$_2$O:CO$_2$ ice mixture was used to address the H$_2$O and CO$_2$ column density variation whereas the CH$_3$OH and HCOOH are a byproduct of the virgin ice after the energetic processing. The simulated spectra were used to calculate the ice column densities of YSOs in an evolutionary sequence. As a result, the models show that the ice column density variation of HCOOH with $alpha$ can be justified by the envelope dissipation and ice energetic processing. On the other hand, the ice column densities are mostly overestimated in the cases of H$_2$O, CO$_2$ and CH$_3$OH, even though the physical and cosmic-ray processing effects are taken into account.
In this study, we employed broadband X-rays ($6-2000$ eV) to irradiate the frozen acetone CH$_3$COCH$_3$, at the temperature of 12 K, with different photon fluences up to $2.7times 10^{18}$ photons cm$^{-2}$. Here, we consider acetone as a representa
We model the ALMA and VLA millimeter radial profiles of the disk around HL Tau to constrain the properties of the dust grains. We adopt the disk evolutionary models of Lynden-Bell & Pringle and calculate their temperature and density structure and em
(Abridged) The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still
As a part of the CALYPSO large programme, we constrain the properties of protostellar jets and outflows in a sample of 21 Class 0 protostars with internal luminosities, Lint, from 0.035 to 47 Lsun. We analyse high angular resolution (~0.5-1) IRAM PdB
The volatile composition of a planet is determined by the inventory of gas and ice in the parent disk. The volatile chemistry in the disk is expected to evolve over time, though this evolution is poorly constrained observationally. We present ALMA ob