ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Grain Properties in the Disk of HL Tau with an Evolutionary Model

203   0   0.0 ( 0 )
 نشر من قبل Carlos Tapia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model the ALMA and VLA millimeter radial profiles of the disk around HL Tau to constrain the properties of the dust grains. We adopt the disk evolutionary models of Lynden-Bell & Pringle and calculate their temperature and density structure and emission. These disks are heated by the internal viscosity and irradiated by the central star and a warm envelope. We consider a dust size distribution $n(a) da propto a^{-3.5} da $, and vary the maximum grain size in the atmosphere and the midplane, $a_{rm max}=100 mu$m, 1 mm, and 1cm. We also include dust settling and vary the dust-to-gas mass ratio from 1 to 9 times the ISM value. We find that the models that can fit the observed level of emission along the profiles at all wavelengths have an atmosphere with a maximum grain size $a_{rm max} = 100 mu$m, and a midplane with $a_{rm max}=1$ cm. The disk substructure, with a deficit of emission in the gaps, can be due to dust properties in these regions that are different from those in the rings. We test an opacity effect (different $a_{rm max}$) and a dust mass deficit (smaller dust-to-gas mass ratio) in the gaps. We find that the emission profiles are better reproduced by models with a dust deficit in the gaps, although a combined effect is also possible. These models have a global dust-to-gas mass ratio twice the ISM value, needed to reach the level of emission of the 7.8 mm VLA profile.



قيم البحث

اقرأ أيضاً

The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (p roto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of 0.001 - 0.003 Msun, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.
The protoplanetary disk around HL Tau is so far the youngest candidate of planet formation, and it is still embedded in a protostellar envelope with a size of thousands of au. In this work, we study the gas kinematics in the envelope and its possible influence on the embedded disk. We present our new ALMA cycle 3 observational results of HL Tau in the 13CO (2-1) and C18O (2-1) emission at resolutions of 0.8 (110 au), and we compare the observed velocity pattern with models of different kinds of gas motions. Both the 13CO and C18O emission lines show a central compact component with a size of 2 (280 au), which traces the protoplanetary disk. The disk is clearly resolved and shows a Keplerian motion, from which the protostellar mass of HL Tau is estimated to be 1.8+/-0.3 M$_odot$, assuming the inclination angle of the disk to be 47 deg from the plane of the sky. The 13CO emission shows two arc structures with sizes of 1000-2000 au and masses of 3E-3 M$_odot$ connected to the central disk. One is blueshifted and stretches from the northeast to the northwest, and the other is redshifted and stretches from the southwest to the southeast. We find that simple kinematical models of infalling and (counter-)rotating flattened envelopes cannot fully explain the observed velocity patterns in the arc structures. The gas kinematics of the arc structures can be better explained with three-dimensional infalling or outflowing motions. Nevertheless, the observed velocity in the northwestern part of the blueshifted arc structure is ~60-70% higher than the expected free-fall velocity. We discuss two possible origins of the arc structures: (1) infalling flows externally compressed by an expanding shell driven by XZ Tau and (2) outflowing gas clumps caused by gravitational instabilities in the protoplanetary disk around HL Tau.
90 - L. Testi 2015
Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused by planetary bodies. Given the young age of this system, if confirmed, this finding would imply very short timescales for planet formation, probably in a gravitationally unst able disk. To test this scenario, we searched for young planets by means of direct imaging in the L-band using the Large Binocular Telescope Interferometer mid-infrared camera. At the location of two prominent dips in the dust distribution at ~70AU (~0.5) from the central star we reach a contrast level of ~7.5mag. We did not detect any point source at the location of the rings. Using evolutionary models we derive upper limits of ~10-15MJup at <=0.5-1Ma for the possible planets. With these sensitivity limits we should have been able to detect companions sufficiently massive to open full gaps in the disk. The structures detected at mm-wavelengths could be gaps in the distributions of large grains on the disk midplane, caused by planets not massive enough to fully open gaps. Future ALMA observations of the molecular gas density profile and kinematics as well as higher contrast infrared observations may be able to provide a definitive answer.
We used new ALMA $^{13}$CO and C$^{18}$O(3-2) observations obtained at high angular resolution ($sim$0.2) together with previous CO(3-2) and (6-5) ALMA data and continuum maps at 1.3 and 0.8 mm in order to determine the gas properties (temperature, d ensity, and kinematics) in the cavity and to a lesser extent in the outer disk of GG Tau A, the prototype of a young triple T Tauri star that is surrounded by a massive and extended Keplerian outer disk. By deprojecting, we studied the radial and azimuthal gas distribution and its kinematics. We also applied a new method to improve the deconvolution of the CO data and in particular better quantify the emission from gas inside the cavity. We perform local and nonlocal thermodynamic equilibrium studies in order to determine the excitation conditions and relevant physical parameters inside the ring and in the central cavity. Residual emission after removing a smooth-disk model indicates unresolved structures at our angular resolution, probably in the form of irregular rings or spirals. The outer disk is cold, with a temperature $<20$ K beyond 250 au that drops quickly (r$^{-1}$). The kinematics of the gas inside the cavity reveals infall motions at about 10% of the Keplerian speed. We derive the amount of gas in the cavity, and find that the brightest clumps, which contain about 10% of this mass, have kinetic temperatures 40$-$80 K, CO column densities of a few 10$^{17}$ cm$^{-2}$, and H$_2$ densities around 10$^7$ cm$^{-3}$. Although the gas in the cavity is only a small fraction of the disk mass, the mass accretion rate throughout the cavity is comparable to or higher than the stellar accretion rate. It is accordingly sufficient to sustain the circumstellar disks on a long timescale.
We present a self-consistent model of a protoplanetary disk: ANDES (AccretioN disk with Dust Evolution and Sedimentation). ANDES is based on a flexible and extendable modular structure that includes 1) a 1+1D frequency-dependent continuum radiative t ransfer module, 2) a module to calculate the chemical evolution using an extended gas-grain network with UV/X-ray-driven processes surface reactions, 3) a module to calculate the gas thermal energy balance, and 4) a 1+1D module that simulates dust grain evolution. For the first time, grain evolution and time-dependent molecular chemistry are included in a protoplanetary disk model. We find that grain growth and sedimentation of large grains to the disk midplane lead to a dust-depleted atmosphere. Consequently, dust and gas temperatures become higher in the inner disk (R < 50 AU) and lower in the outer disk (R > 50 AU), in comparison with the disk model with pristine dust. The response of disk chemical structure to the dust growth and sedimentation is twofold. First, due to higher transparency a partly UV-shielded molecular layer is shifted closer to the dense midplane. Second, the presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO there, while in adjacent upper layers the depletion is still effective. Molecular concentrations and thus column densities of many species are enhanced in the disk model with dust evolution, e.g., CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO. We also show that time-dependent chemistry is important for a proper description of gas thermal balance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا