ﻻ يوجد ملخص باللغة العربية
The problem of verifying whether a multi-component system has anomalies or not is addressed. Each component can be probed over time in a data-driven manner to obtain noisy observations that indicate whether the selected component is anomalous or not. The aim is to minimize the probability of incorrectly declaring the system to be free of anomalies while ensuring that the probability of correctly declaring it to be safe is sufficiently large. This problem is modeled as an active hypothesis testing problem in the Neyman-Pearson setting. Component-selection and inference strategies are designed and analyzed in the non-asymptotic regime. For a specific class of homogeneous problems, stronger (with respect to prior work) non-asymptotic converse and achievability bounds are provided.
Opportunistic detection rules (ODRs) are variants of fixed-sample-size detection rules in which the statistician is allowed to make an early decision on the alternative hypothesis opportunistically based on the sequentially observed samples. From a s
We investigate the nonparametric, composite hypothesis testing problem for arbitrary unknown distributions in the asymptotic regime where both the sample size and the number of hypotheses grow exponentially large. Such asymptotic analysis is importan
The goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. A test is positive if it has at least $u$ defective items and negative otherwise. Our objective
The task of non-adaptive group testing is to identify up to $d$ defective items from $N$ items, where a test is positive if it contains at least one defective item, and negative otherwise. If there are $t$ tests, they can be represented as a $t times
We consider the problem of decentralized sequential active hypothesis testing (DSAHT), where two transmitting agents, each possessing a private message, are actively helping a third agent--and each other--to learn the message pair over a discrete mem