ﻻ يوجد ملخص باللغة العربية
We investigate the nonparametric, composite hypothesis testing problem for arbitrary unknown distributions in the asymptotic regime where both the sample size and the number of hypotheses grow exponentially large. Such asymptotic analysis is important in many practical problems, where the number of variations that can exist within a family of distributions can be countably infinite. We introduce the notion of emph{discrimination capacity}, which captures the largest exponential growth rate of the number of hypotheses relative to the sample size so that there exists a test with asymptotically vanishing probability of error. Our approach is based on various distributional distance metrics in order to incorporate the generative model of the data. We provide analyses of the error exponent using the maximum mean discrepancy (MMD) and Kolmogorov-Smirnov (KS) distance and characterize the corresponding discrimination rates, i.e., lower bounds on the discrimination capacity, for these tests. Finally, an upper bound on the discrimination capacity based on Fanos inequality is developed. Numerical results are presented to validate the theoretical results.
We consider the problem of distributed binary hypothesis testing of two sequences that are generated by an i.i.d. doubly-binary symmetric source. Each sequence is observed by a different terminal. The two hypotheses correspond to different levels of
In this paper, we propose a Bayesian Hypothesis Testing Algorithm (BHTA) for sparse representation. It uses the Bayesian framework to determine active atoms in sparse representation of a signal. The Bayesian hypothesis testing based on three assump
We study a hypothesis testing problem in which data is compressed distributively and sent to a detector that seeks to decide between two possible distributions for the data. The aim is to characterize all achievable encoding rates and exponents of th
We study the problem of mismatched binary hypothesis testing between i.i.d. distributions. We analyze the tradeoff between the pairwise error probability exponents when the actual distributions generating the observation are different from the distri
We revisit the universal outlier hypothesis testing (Li emph{et al.}, TIT 2014) and derive fundamental limits for the optimal test. In outlying hypothesis testing, one is given multiple observed sequences, where most sequences are generated i.i.d. fr