ﻻ يوجد ملخص باللغة العربية
The dynamics of fermions in curved spacetime is governed by a spin connection, a part of which is contorsion, an auxiliary field independent of the metric, without dynamics but fully expressible in terms of the axial current density of fermions. Its effect is the appearance of a quartic interaction involving all fermions. Contorsion can couple to left and right-handed fermions with different strengths, leading to an effective mass for fermions propagating on a background containing fermionic matter.
We describe the Hamilton geometry of the phase space of particles whose motion is characterised by general dispersion relations. In this framework spacetime and momentum space are naturally curved and intertwined, allowing for a simultaneous descript
Quantum gravity phenomenology suggests an effective modification of the general relativistic dispersion relation of freely falling point particles caused by an underlying theory of quantum gravity. Here we analyse the consequences of modifications of
To investigate the origin and nature of inertia, we introduce a new concept of hypothetical 2D, so-called, master-space (MS), subject to certain rules. The MS, embedded in the background 4D-spacetime, is an indispensable individual companion to the p
We study geodesics in the Schwarzschild space-time affected by an uncertainty in the mass parameter described by a Gaussian distribution. This study could serve as a first attempt at investigating possible quantum effects of black hole space-times on
We consider a deviation of the physical length from the Riemann geometry toward the Randers. We construct a consistent second-order relativistic theory of gravity that dynamically reduces to the Einstein-Hilbert theory for the strong and Newtonian gr