ﻻ يوجد ملخص باللغة العربية
Sources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlled experimental setting. While multi-mode entangled states of radiation have been generated in various platforms, all previous experiments are either probabilistic or restricted to generate specific types of states with a moderate entanglement length. Here, we demonstrate the fully deterministic generation of purely photonic entangled states such as the cluster, GHZ, and W state by sequentially emitting microwave photons from a controlled auxiliary system into a waveguide. We tomographically reconstruct the entire quantum many-body state for up to $N=4$ photonic modes and infer the quantum state for even larger $N$ from process tomography. We estimate that localizable entanglement persists over a distance of approximately ten photonic qubits, outperforming any previous deterministic scheme.
We present an efficient method to generate a Greenberger-Horne-Zeilinger (GHZ) entangled state of three cat-state qubits (cqubits) via circuit QED. The GHZ state is prepared with three microwave cavities coupled to a superconducting transmon qutrit.
We use semiconductor quantum dots, artificial atoms, to implement a scheme for deterministic generation of long strings of entangled photons in a cluster state, an important resource for quantum information processing. We demonstrate a prototype devi
In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting
I generalize the concept of balancedness to qudits with arbitrary dimension $d$. It is an extension of the concept of balancedness in New J. Phys. {bf 12}, 075025 (2010) [1]. At first, I define maximally entangled states as being the stochastic state
Recently, Halder emph{et al.} [S. Halder emph{et al.}, Phys. Rev. Lett. textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable