ﻻ يوجد ملخص باللغة العربية
In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in preferred bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence induced by the free evolution dynamics on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.
Recently, Halder emph{et al.} [S. Halder emph{et al.}, Phys. Rev. Lett. textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable
I generalize the concept of balancedness to qudits with arbitrary dimension $d$. It is an extension of the concept of balancedness in New J. Phys. {bf 12}, 075025 (2010) [1]. At first, I define maximally entangled states as being the stochastic state
The ability to generate and verify multipartite entanglement is an important benchmark for near-term quantum devices devices. We develop a scalable entanglement metric based on multiple quantum coherences, and demonstrate experimentally on a 20-qubit
Complementarity between one- and two-particle visibility in discrete systems can be extended to bipartite quantum-entangled Gaussian states. The meaning of the two-particle visibility originally defined by Jaeger, Horne, Shimony, and Vaidman with the
Quantum conversation is a way in which two parties can communicate classical information with each other using entanglement as a shared resource. We present this scheme using a multipartite entangled state after describing its generation through appr