ترغب بنشر مسار تعليمي؟ اضغط هنا

Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr

107   0   0.0 ( 0 )
 نشر من قبل Evan Telford
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However current vdW magnets are limited by their extreme sensitivity to air, low ordering temperatures, and poor charge transport properties. Here we report the magnetic and electronic properties of CrSBr, an air-stable vdW antiferromagnetic semiconductor that readily cleaves perpendicular to the stacking axis. Below its N{e}el temperature, $T_N = 132 pm 1$ K, CrSBr adopts an A-type antiferromagnetic structure with each individual layer ferromagnetically ordered internally and the layers coupled antiferromagnetically along the stacking direction. Scanning tunneling spectroscopy and photoluminescence (PL) reveal that the electronic gap is $Delta_E = 1.5 pm 0.2$ eV with a corresponding PL peak centered at $1.25 pm 0.07$ eV. Using magnetotransport measurements, we demonstrate strong coupling between magnetic order and transport properties in CrSBr, leading to a large negative magnetoresistance response that is unique amongst vdW materials. These findings establish CrSBr as a promising material platform for increasing the applicability of vdW magnets to the field of spin-based electronics.



قيم البحث

اقرأ أيضاً

The crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe3 have been investigated on single crystal and polycrystalline materials. The crystal structure contains layers made up of lozenge shaped Cr_4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3eV. The magnetic susceptibility exhibits a broad maximum near 300K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55K, and single crystal neutron diffraction reveals the onset of long range antiferromagnetic order at this temperature. Strongly dispersive spin-waves are observed in the ordered state. Significant magneto-elastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is apparent in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first principles calculations, which predict a cleavage energy 0.5J/m^2, similar to graphite. Based on these results, CrTe3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.
Controlling magnetism in low dimensional materials is essential for designing devices that have feature sizes comparable to several critical length scales that exploit functional spin textures, allowing the realization of low-power spintronic and mag neto-electric hardware. [1] Unlike conventional covalently-bonded bulk materials, van der Waals (vdW)-bonded layered magnets [2-4] offer exceptional degrees of freedom for engineering spin textures. [5] However, their structural instability has hindered microscopic studies and manipulations. Here, we demonstrate nanoscale structural control in the layered magnet CrSBr creating novel spin textures down to the atomic scale. We show that it is possible to drive a local structural phase transformation using an electron beam that locally exchanges the bondings in different directions, effectively creating regions that have vertical vdW layers embedded within the horizontally vdW bonded exfoliated flakes. We calculate that the newly formed 2D structure is ferromagnetically ordered in-plane with an energy gap in the visible spectrum, and weak antiferromagnetism between the planes. Our study lays the groundwork for designing and studying novel spin textures and related quantum magnetic phases down to single-atom sensitivity, potentially to create on-demand spin Hamiltonians probing fundamental concepts in physics, [6-10] and for realizing high-performance spintronic, magneto-electric and topological devices with nanometer feature sizes. [11,12]
The bulk piezoelectric response, as measured by the piezoelectric modulus tensor (textbf{d}), is determined by a combination of charge redistribution due to strain and the amount of strain produced by the application of stress (stiffness). Motivated by the notion that less stiff materials could exhibit large piezoelectric responses, herein we investigate the piezoelectric modulus of van der Waals-bonded quasi-2D ionic compounds using first-principles calculations. From a pool of 869 known binary and ternary quasi-2D materials, we have identified 135 non-centrosymmetric crystals of which 48 systems are found to have textbf{d} components larger than the longitudinal piezoelectric modulus of AlN (a common piezoelectric for resonators), and three systems with the response greater than that of PbTiO$_3$, which is among the materials with largest known piezoelectric modulus. None of the identified materials have previously been considered for piezoelectric applications. Furthermore, we find that large textbf{d} components always couple to the deformations (shearing or axial) of van der Waals gaps between the layers and are indeed enabled by the weak intra-layer interactions.
The interest in ferroelectric van der Waals crystals arises from the potential to realize ultrathin ferroic systems owing to the reduced surface energy of these materials and the layered structure that allows for exfoliation. Here, we quantitatively unravel giant negative electrostriction of van der Waals layered copper indium thiophosphate (CIPS), which exhibits an electrostrictive coefficient Q33 as high as -3.2 m4/C2 and a resulting bulk piezoelectric coefficient d33 up to -85 pm/V. As a result, the electromechanical response of CIPS is comparable in magnitude to established perovskite ferroelectrics despite possessing a much smaller spontaneous polarization of only a few uC/cm2. In the paraelectric state, readily accessible owing to low transition temperatures, CIPS exhibits large dielectric tunability, similar to widely-used barium strontium titanate, and as a result both giant and continuously tunable electromechanical response. The persistence of electrostrictive and tunable responses in the paraelectric state indicates that even few layer films or nanoparticles will sustain significant electromechanical functionality, offsetting the inevitable suppression of ferroelectric properties in the nanoscale limit. These findings can likely be extended to other ferroelectric transition metal thiophosphates and (quasi-) two-dimensional materials and might facilitate the quest towards novel ultrathin functional devices incorporating electromechanical response.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t he family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا