ﻻ يوجد ملخص باللغة العربية
The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However current vdW magnets are limited by their extreme sensitivity to air, low ordering temperatures, and poor charge transport properties. Here we report the magnetic and electronic properties of CrSBr, an air-stable vdW antiferromagnetic semiconductor that readily cleaves perpendicular to the stacking axis. Below its N{e}el temperature, $T_N = 132 pm 1$ K, CrSBr adopts an A-type antiferromagnetic structure with each individual layer ferromagnetically ordered internally and the layers coupled antiferromagnetically along the stacking direction. Scanning tunneling spectroscopy and photoluminescence (PL) reveal that the electronic gap is $Delta_E = 1.5 pm 0.2$ eV with a corresponding PL peak centered at $1.25 pm 0.07$ eV. Using magnetotransport measurements, we demonstrate strong coupling between magnetic order and transport properties in CrSBr, leading to a large negative magnetoresistance response that is unique amongst vdW materials. These findings establish CrSBr as a promising material platform for increasing the applicability of vdW magnets to the field of spin-based electronics.
The crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe3 have been investigated on single crystal and polycrystalline materials. The crystal structure contains layers made up of lozenge shaped Cr_4
Controlling magnetism in low dimensional materials is essential for designing devices that have feature sizes comparable to several critical length scales that exploit functional spin textures, allowing the realization of low-power spintronic and mag
The bulk piezoelectric response, as measured by the piezoelectric modulus tensor (textbf{d}), is determined by a combination of charge redistribution due to strain and the amount of strain produced by the application of stress (stiffness). Motivated
The interest in ferroelectric van der Waals crystals arises from the potential to realize ultrathin ferroic systems owing to the reduced surface energy of these materials and the layered structure that allows for exfoliation. Here, we quantitatively
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t