ﻻ يوجد ملخص باللغة العربية
The crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe3 have been investigated on single crystal and polycrystalline materials. The crystal structure contains layers made up of lozenge shaped Cr_4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3eV. The magnetic susceptibility exhibits a broad maximum near 300K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55K, and single crystal neutron diffraction reveals the onset of long range antiferromagnetic order at this temperature. Strongly dispersive spin-waves are observed in the ordered state. Significant magneto-elastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is apparent in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first principles calculations, which predict a cleavage energy 0.5J/m^2, similar to graphite. Based on these results, CrTe3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.
The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However current vdW magnets are lim
Two-dimensional van der Waals compounds with magnetic ions on a honeycomb lattice are hosts to a variety of exotic behavior. The magnetic interactions in one such compound, MnPSe$_3$, are investigated with elastic and inelastic neutron scattering. Ma
Kitaev spin liquid (KSL) system has attracted tremendous attention in past years because of its fundamental significance in condensed matter physics and promising applications in fault-tolerant topological quantum computation. Material realization of
Strong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS3, a van derWaals antiferromagnet, from our study of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray a
Controlling magnetism in low dimensional materials is essential for designing devices that have feature sizes comparable to several critical length scales that exploit functional spin textures, allowing the realization of low-power spintronic and mag