ﻻ يوجد ملخص باللغة العربية
We study the routing policy choice problems in a stochastic time-dependent (STD) network. A routing policy is defined as a decision rule applied at the end of each link that maps the realized traffic condition to the decision on the link to take next. Two types of routing policy choice models are formulated with perfect online information (POI): recursive logit model and non-recursive logit model. In the non-recursive model, a choice set of routing policies between an origin-destination (OD) pair is generated, and a probabilistic choice is modeled at the origin, while the choice of the next link at each link is a deterministic execution of the chosen routing policy. In the recursive model, the probabilistic choice of the next link is modeled at each link, following the framework of dynamic discrete choice models. The two models are further compared in terms of computational efficiency in estimation and prediction, and flexibility in systematic utility specification and modeling correlation.
A selfcontained proof of the KAM theorem in the Thirring model is discussed, completely relaxing the ``strong diophantine property hypothesis used in previous papers. Keywords: it KAM, invariant tori, classical mechanics, perturbation theory, chaos
Real-time simulation enables the understanding of system operating conditions by evaluating simulation models of physical components running synchronized at the real-time wall clock. Leveraging the real-time measurements of comprehensive system model
Moving parcels from origin to destination should not require a lot of re-planning. However, the vast number of shipments and destinations, which need to be re-aligned in real-time due to various external factors makes the delivery process a complex i
Redundant robots are desired to execute multitasks with different priorities simultaneously. The task priorities are necessary to be transitioned for complex task scheduling of whole-body control (WBC). Many methods focused on guaranteeing the contro
The topic of this paper is the design of a fully distributed and real-time capable control scheme for the automation of road intersections. State of the art Vehicle-to-Vehicle (V2V) communication technology is adopted. Vehicles distributively negotia