ﻻ يوجد ملخص باللغة العربية
We consider the filtering of continuous-time finite-state hidden Markov models, where the rate and observation matrices depend on unknown time-dependent parameters, for which no prior or stochastic model is available. We quantify and analyze how the induced uncertainty may be propagated through time as we collect new observations, and used to simultaneously provide robust estimates of the hidden signal and to learn the unknown parameters, via techniques based on pathwise filtering and new results on the optimal control of rough differential equations.
We consider the problem of filtering an unseen Markov chain from noisy observations, in the presence of uncertainty regarding the parameters of the processes involved. Using the theory of nonlinear expectations, we describe the uncertainty in terms o
To analyze whole-genome genetic data inherited in families, the likelihood is typically obtained from a Hidden Markov Model (HMM) having a state space of 2^n hidden states where n is the number of meioses or edges in the pedigree. There have been sev
In the late seventies, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721-734, Sijthoff & Noordhoff] pointed out that it would be natural for $pi_t$, the solution of the stocha
Hidden Markov Models (HMMs) are learning methods for pattern recognition. The probabilistic HMMs have been one of the most used techniques based on the Bayesian model. First-order probabilistic HMMs were adapted to the theory of belief functions such
We provide a sufficient criterion for the unique parameter identification of combinatorially symmetric Hidden Markov Models based on the structure of their transition matrix. If the observed states of the chain form a zero forcing set of the graph of