ﻻ يوجد ملخص باللغة العربية
In the late seventies, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721-734, Sijthoff & Noordhoff] pointed out that it would be natural for $pi_t$, the solution of the stochastic filtering problem, to depend continuously on the observed data $Y={Y_s,sin[0,t]}$. Indeed, if the signal and the observation noise are independent one can show that, for any suitably chosen test function $f$, there exists a continuous map $theta^f_t$, defined on the space of continuous paths $C([0,t],mathbb{R}^d)$ endowed with the uniform convergence topology such that $pi_t(f)=theta^f_t(Y)$, almost surely; see, for example, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721-734, Sijthoff & Noordhoff], Clark and Crisan [Probab. Theory Related Fields 133 (2005) 43-56], Davis [Z. Wahrsch. Verw. Gebiete 54 (1980) 125-139], Davis [Teor. Veroyatn. Primen. 27 (1982) 160-167], Kushner [Stochastics 3 (1979) 75-83]. As shown by Davis and Spathopoulos [SIAM J. Control Optim. 25 (1987) 260-278], Davis [In Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Proc. NATO Adv. Study Inst. Les Arcs, Savoie, France 1980 505-528], [In The Oxford Handbook of Nonlinear Filtering (2011) 403-424 Oxford Univ. Press], this type of robust representation is also possible when the signal and the observation noise are correlated, provided the observation process is scalar. For a general correlated noise and multidimensional observations such a representation does not exist. By using the theory of rough paths we provide a solution to this deficiency: the observation process $Y$ is lifted to the process $mathbf{Y}$ that consists of $Y$ and its corresponding L{e}vy area process, and we show that there exists a continuous map $theta_t^f$, defined on a suitably chosen space of H{o}lder continuous paths such that $pi_t(f)=theta_t^f(mathbf{Y})$, almost surely.
The objective in stochastic filtering is to reconstruct information about an unobserved (random) process, called the signal process, given the current available observations of a certain noisy transformation of that process. Usually X and Y are mod
In this paper we study zero-noise limits of $alpha -$stable noise perturbed ODEs which are driven by an irregular vector field $A$ with asymptotics $% A(x)sim overline{a}(frac{x}{leftvert xrightvert })leftvert xrightvert ^{beta -1}x$ at zero, where $
We consider the filtering of continuous-time finite-state hidden Markov models, where the rate and observation matrices depend on unknown time-dependent parameters, for which no prior or stochastic model is available. We quantify and analyze how the
We study the problem of pathwise stochastic optimal control, where the optimization is performed for each fixed realisation of the driving noise, by phrasing the problem in terms of the optimal control of rough differential equations. We investigate
This paper suggests a new approach to error analysis in the filtering problem for continuous time linear system driven by fractional Brownian noises. We establish existence of the large time limit of the filtering error and determine its scaling expo