ﻻ يوجد ملخص باللغة العربية
We experimentally and theoretically show that the electron energy spectra strongly depend on the relative helicity in highly intense, circularly polarized two-color laser fields which is an unexpected finding. The employed counter-rotating two-color (CRTC) fields and the co-rotating two-color (CoRTC) fields are both a superposition of circularly polarized laser pulses at a central wavelength of 390 nm and 780 nm (intensitiy ratio $I_{390}/I_{780}approx 250$). For the CRTC field, the measured electron energy spectrum is dominated by peaks that are spaced by 3.18 eV (corresponds to the photon energy of light at a wavelength of 390 nm). For the CoRTC field, we observe additional energy peaks (sidebands). Using our semi-classical, trajectory-based models, we conclude that the sideband intensity is modulated by a sub-cycle interference, which sensitively depends on the relative helicity in circularly polarized two-color fields.
We report on three-dimensional (3D) electron momentum distributions from single ionization of helium by a laser pulse consisting of two counterrotating circularly polarized fields (390 nm and 780 nm). A pronounced 3D low energy structure and sub-cycl
The sub-cycle dynamics of electrons driven by strong laser fields is central to the emerging field of attosecond science. We demonstrate how the dynamics can be probed through high-order harmonic generation, where different trajectories leading to th
Strong-field ionization of polar molecules contains rich dynamical processes such as tunneling, excitation, and Stark shift. These processes occur on a sub-cycle time scale and are difficult to distinguish in ultrafast measurements. Here, with a deve
We investigate the interwoven dynamic evolutions of neutral nitrogen molecules together with nitrogen ions created through transient tunnel ionization in an intense laser field. By treating the molecules as open quantum systems, it is found that cons
Magnetic control of reactive scattering is realized in an ultracold mixture of $^{23}$Na atoms and $^{23}$Na$^{6}$Li molecules via Feshbach resonances. In most molecular systems, particles form lossy collision complexes at short range with unity prob