ﻻ يوجد ملخص باللغة العربية
In this work, a generalized nonlocal Lakshmanan-Porsezian-Daniel (LPD) equation is introduced, and its integrability as an infinite dimensional Hamilton dynamic system is established. Motivated by the ideas of Ablowitz and Musslimani (2016 Nonlinearity 29 915), we successfully derive the inverse scattering transform (IST) of the nonlocal LPD equation. The direct scattering problem of the equation is first constructed, and some important symmetries of the eigenfunctions and the scattering data are discussed. By using a novel Left-Right Riemann-Hilbert (RH) problem, the inverse scattering problem is analyzed, and the potential function is recovered. By introducing the special conditions of reflectionless case, the time-periodic soliton solutions formula of the equation is derived successfully. Take $J=overline{J}=1,2,3$ and $4$ for example, we obtain some interesting phenomenon such as breather-type solitons, arc solitons, three soliton and four soliton. Furthermore, the influence of parameter $delta$ on these solutions is further considered via the graphical analysis. Finally, the eigenvalues and conserved quantities are investigated under a few special initial conditions.
The theory of inverse scattering is developed to study the initial-value problem for the modified matrix Korteweg-de Vries (mmKdV) equation with the $2mtimes2m$ $(mgeq 1)$ Lax pairs under the nonzero boundary conditions at infinity. In the direct pro
We extend the Riemann-Hilbert (RH) method to study the inverse scattering transformation and high-order pole solutions of the focusing and defocusing nonlocal (reverse-space-time) modified Korteweg-de Vries (mKdV) equations with nonzero boundary cond
The inverse scattering transform is extended to investigate the Tzitz{e}ica equation. A set of sectionally analytic eigenfunctions and auxiliary eigenfunctions are introduced. We note that in this procedure, the auxiliary eigenfunctions play an impor
As in the case of soliton PDEs in 2+1 dimensions, the evolutionary form of integrable dispersionless multidimensional PDEs is non-local, and the proper choice of integration constants should be the one dictated by the associated Inverse Scattering Tr
In this work, we extend the Riemann-Hilbert (RH) method in order to study the coupled modified Korteweg-de Vries equation (cmKdV) under nonzero boundary conditions (NZBCs), and successfully find its solutions with their various dynamic propagation be