ﻻ يوجد ملخص باللغة العربية
Avikainen showed that, for any $p,q in [1,infty)$, and any function $f$ of bounded variation in $mathbb{R}$, it holds that $mathbb{E}[|f(X)-f(widehat{X})|^{q}] leq C(p,q) mathbb{E}[|X-widehat{X}|^{p}]^{frac{1}{p+1}}$, where $X$ is a one-dimensional random variable with a bounded density, and $widehat{X}$ is an arbitrary random variable. In this article, we will provide multi-dimensiona
Let $X$ be a $d$-dimensional random vector and $X_theta$ its projection onto the span of a set of orthonormal vectors ${theta_1,...,theta_k}$. Conditions on the distribution of $X$ are given such that if $theta$ is chosen according to Haar measure on
The paper provides an estimate of the total variation distance between distributions of polynomials defined on a space equipped with a logarithmically concave measure in terms of the $L^2$-distance between these polynomials.
The strong $L^2$-approximation of occupation time functionals is studied with respect to discrete observations of a $d$-dimensional c`adl`ag process. Upper bounds on the error are obtained under weak assumptions, generalizing previous results in the
Series expansions of isotropic Gaussian random fields on $mathbb{S}^2$ with independent Gaussian coefficients and localized basis functions are constructed. Such representations provide an alternative to the standard Karhunen-Lo`eve expansions of iso
We study the problem of approximating the eigenspectrum of a symmetric matrix $A in mathbb{R}^{n times n}$ with bounded entries (i.e., $|A|_{infty} leq 1$). We present a simple sublinear time algorithm that approximates all eigenvalues of $A$ up to a