ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximation of projections of random vectors

161   0   0.0 ( 0 )
 نشر من قبل Elizabeth Meckes
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Elizabeth Meckes




اسأل ChatGPT حول البحث

Let $X$ be a $d$-dimensional random vector and $X_theta$ its projection onto the span of a set of orthonormal vectors ${theta_1,...,theta_k}$. Conditions on the distribution of $X$ are given such that if $theta$ is chosen according to Haar measure on the Stiefel manifold, the bounded-Lipschitz distance from $X_theta$ to a Gaussian distribution is concentrated at its expectation; furthermore, an explicit bound is given for the expected distance, in terms of $d$, $k$, and the distribution of $X$, allowing consideration not just of fixed $k$ but of $k$ growing with $d$. The results are applied in the setting of projection pursuit, showing that most $k$-dimensional projections of $n$ data points in $R^d$ are close to Gaussian, when $n$ and $d$ are large and $k=csqrt{log(d)}$ for a small constant $c$.



قيم البحث

اقرأ أيضاً

Avikainen showed that, for any $p,q in [1,infty)$, and any function $f$ of bounded variation in $mathbb{R}$, it holds that $mathbb{E}[|f(X)-f(widehat{X})|^{q}] leq C(p,q) mathbb{E}[|X-widehat{X}|^{p}]^{frac{1}{p+1}}$, where $X$ is a one-dimensional r andom variable with a bounded density, and $widehat{X}$ is an arbitrary random variable. In this article, we will provide multi-dimensiona
A definition of $d$--dimensional $n$--Meixner random vectors is given first. This definition involves the commutators of their semi--quantum operators. After that we will focus on the $1$-Meixner random vectors, and derive a system of $d$ partial dif ferential equations satisfied by their Laplace transform. We provide a set of necessary conditions for this system to be integrable. We use these conditions to give a complete characterization of all non--degenerate three--dimensional $1$--Meixner random vectors. It must be mentioned that the three--dimensional case produces the first example in which the components of a $1$--Meixner random vector cannot be reduced, via an injective linear transformation, to three independent classic Meixner random variables.
356 - Xinjia Chen 2013
We derive simple concentration inequalities for bounded random vectors, which generalize Hoeffdings inequalities for bounded scalar random variables. As applications, we apply the general results to multinomial and Dirichlet distributions to obtain multivariate concentration inequalities.
We study distributions of random vectors whose components are second order polynomials in Gaussian random variables. Assuming that the law of such a vector is not absolutely continuous with respect to Lebesgue measure, we derive some interesting cons equences. Our second result gives a characterization of limits in law for sequences of such vectors.
For n>=1 let X_n be a vector of n independent Bernoulli random variables. We assume that X_n consists of M blocks such that the Bernoulli random variables in block i have success probability p_i. Here M does not depend on n and the size of each block is essentially linear in n. Let X_n be a random vector having the conditional distribution of X_n, conditioned on the total number of successes being at least k_n, where k_n is also essentially linear in n. Define Y_n similarly, but with success probabilities q_i>=p_i. We prove that the law of X_n converges weakly to a distribution that we can describe precisely. We then prove that sup Pr(X_n <= Y_n) converges to a constant, where the supremum is taken over all possible couplings of X_n and Y_n. This constant is expressed explicitly in terms of the parameters of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا