ﻻ يوجد ملخص باللغة العربية
Axion, a hypothetical particle that is crucial to quantum chromodynamics and dark matter theory, has not yet been found in any experiment. With the improvement of laser technique, much stronger quasi-static electric and magnetic fields can be created in laboratory using laser-plasma interaction. In this article, we discuss the feasibility of axion or axionlike-particles exploring experiments using planar and cylindrically symmetric laser-plasma fields as backgrounds while probing with an ultrafast superstrong optical laser or x-ray free-electron laser with high photon number. Compared to classical magnet design, the axion source in laser-plasma interaction trades the accumulating length for the sources interacting strength. Besides, a structured field in the plasma creates a tunable transverse profile of the interaction and improves the signal-noise ratio via the mechanisms such as phase-matching. The mass of axion discussed in this article ranges from 1 textmu eV to 1 eV. Some simple schemes and estimations of axion production and probes polarization rotation are given, which reveals the possibility of future laser-plasma axion source in laboratory.
We report the enhancement of individual harmonics generated at a relativistic ultra-steep plasma vacuum interface. Simulations show the harmonic emission to be due to the coupled action of two high velocity oscillations -- at the fundamental $omega_L
Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particul
Plasma waves generated in the wake of intense, relativistic laser or particle beams can accelerate electron bunches to giga-electronvolt (GeV) energies in centimetre-scale distances. This allows the realization of compact accelerators having emerging
We investigate the generation of broadband terahertz (THz) pulses with phase singularity from air plasmas created by fundamental and second harmonic laser pulses. We show that when the second harmonic beam carries a vortex charge, the THz beam acquir
Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the potential for a number of foreseen applications and in the perspective to investigate novel regimes as fa