ترغب بنشر مسار تعليمي؟ اضغط هنا

A Framework for Designing and Evaluating Solar Flare Forecasting Systems

245   0   0.0 ( 0 )
 نشر من قبل Tiago Cinto
 تاريخ النشر 2020
والبحث باللغة English
 تأليف T. Cinto




اسأل ChatGPT حول البحث

Disturbances in space weather can negatively affect several fields, including aviation and aerospace, satellites, oil and gas industries, and electrical systems, leading to economic and commercial losses. Solar flares are the most significant events that can affect the Earths atmosphere, thus leading researchers to drive efforts on their forecasting. The related literature is comprehensive and holds several systems proposed for flare forecasting. However, most techniques are tailor-made and designed for specific purposes, not allowing researchers to customize them in case of changes in data input or in the prediction algorithm. This paper proposes a framework to design, train, and evaluate flare prediction systems which present promising results. Our proposed framework involves model and feature selection, randomized hyper-parameters optimization, data resampling, and evaluation under operational settings. Compared to baseline predictions, our framework generated some proof-of-concept models with positive recalls between 0.70 and 0.75 for forecasting $geq M$ class flares up to 96 hours ahead while keeping the area under the ROC curve score at high levels.



قيم البحث

اقرأ أيضاً

Solar flares are extremely energetic phenomena in our Solar System. Their impulsive, often drastic radiative increases, in particular at short wavelengths, bring immediate impacts that motivate solar physics and space weather research to understand s olar flares to the point of being able to forecast them. As data and algorithms improve dramatically, questions must be asked concerning how well the forecasting performs; crucially, we must ask how to rigorously measure performance in order to critically gauge any improvements. Building upon earlier-developed methodology (Barnes et al, 2016, Paper I), international representatives of regional warning centers and research facilities assembled in 2017 at the Institute for Space-Earth Environmental Research, Nagoya University, Japan to - for the first time - directly compare the performance of operational solar flare forecasting methods. Multiple quantitative evaluation metrics are employed, with focus and discussion on evaluation methodologies given the restrictions of operational forecasting. Numerous methods performed consistently above the no skill level, although which method scored top marks is decisively a function of flare event definition and the metric used; there was no single winner. Following in this paper series we ask why the performances differ by examining implementation details (Leka et al. 2019, Paper III), and then we present a novel analysis method to evaluate temporal patterns of forecasting errors in (Park et al. 2019, Paper IV). With these works, this team presents a well-defined and robust methodology for evaluating solar flare forecasting methods in both research and operational frameworks, and todays performance benchmarks against which improvements and new methods may be compared.
A workshop was recently held at Nagoya University (31 October - 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of todays operational solar flare forecasting facilities. Building upon Paper I of this series (Barnes et al. 2016), in Paper II (Leka et al. 2019) we described the participating methods for this latest comparison effort, the evaluation methodology, and presented quantitative comparisons. In this paper we focus on the behavior and performance of the methods when evaluated in the context of broad implementation differences. Acknowledging the short testing interval available and the small number of methods available, we do find that forecast performance: 1) appears to improve by including persistence or prior flare activity, region evolution, and a human forecaster in the loop; 2) is hurt by restricting data to disk-center observations; 3) may benefit from long-term statistics, but mostly when then combined with modern data sources and statistical approaches. These trends are arguably weak and must be viewed with numerous caveats, as discussed both here and in Paper II. Following this present work, we present in Paper IV a novel analysis method to evaluate temporal patterns of forecasting errors of both types (i.e., misses and false alarms; Park et al. 2019). Hence, most importantly, with this series of papers we demonstrate the techniques for facilitating comparisons in the interest of establishing performance-positive methodologies.
A crucial challenge to successful flare prediction is forecasting periods that transition between flare-quiet and flare-active. Building on earlier studies in this series (Barnes et al. 2016; Leka et al. 2019a,b) in which we describe methodology, det ails, and results of flare forecasting comparison efforts, we focus here on patterns of forecast outcomes (success and failure) over multi-day periods. A novel analysis is developed to evaluate forecasting success in the context of catching the first event of flare-active periods, and conversely, of correctly predicting declining flare activity. We demonstrate these evaluation methods graphically and quantitatively as they provide both quick comparative evaluations and options for detailed analysis. For the testing interval 2016-2017, we determine the relative frequency distribution of two-day dichotomous forecast outcomes for three different event histories (i.e., event/event, no-event/event and event/no-event), and use it to highlight performance differences between forecasting methods. A trend is identified across all forecasting methods that a high/low forecast probability on day-1 remains high/low on day-2 even though flaring activity is transitioning. For M-class and larger flares, we find that explicitly including persistence or prior flare history in computing forecasts helps to improve overall forecast performance. It is also found that using magnetic/modern data leads to improvement in catching the first-event/first-no-event transitions. Finally, 15% of major (i.e., M-class or above) flare days over the testing interval were effectively missed due to a lack of observations from instruments away from the Earth-Sun line.
The solar X-ray irradiance is significantly heightened during the course of a solar flare, which can cause radio blackouts due to ionization of the atoms in the ionosphere. As the duration of a solar flare is not related to the size of that flare, it is not directly clear how long those blackouts can persist. Using a random forest regression model trained on data taken from X-ray light curves, we have developed a direct forecasting method that predicts how long the event will remain above background levels. We test this on a large collection of flares observed with GOES-15, and show that it generally outperforms simple linear regression. This forecast is computationally light enough to be performed in real time, allowing for the prediction to be made during the course of a flare.
Solar flares originate from magnetically active regions but not all solar active regions give rise to a flare. Therefore, the challenge of solar flare prediction benefits by an intelligent computational analysis of physics-based properties extracted from active region observables, most commonly line-of-sight or vector magnetograms of the active-region photosphere. For the purpose of flare forecasting, this study utilizes an unprecedented 171 flare-predictive active region properties, mainly inferred by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) in the course of the European Union Horizon 2020 FLARECAST project. Using two different supervised machine learning methods that allow feature ranking as a function of predictive capability, we show that: i) an objective training and testing process is paramount for the performance of every supervised machine learning method; ii) most properties include overlapping information and are therefore highly redundant for flare prediction; iii) solar flare prediction is still - and will likely remain - a predominantly probabilistic challenge.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا