ﻻ يوجد ملخص باللغة العربية
A crucial challenge to successful flare prediction is forecasting periods that transition between flare-quiet and flare-active. Building on earlier studies in this series (Barnes et al. 2016; Leka et al. 2019a,b) in which we describe methodology, details, and results of flare forecasting comparison efforts, we focus here on patterns of forecast outcomes (success and failure) over multi-day periods. A novel analysis is developed to evaluate forecasting success in the context of catching the first event of flare-active periods, and conversely, of correctly predicting declining flare activity. We demonstrate these evaluation methods graphically and quantitatively as they provide both quick comparative evaluations and options for detailed analysis. For the testing interval 2016-2017, we determine the relative frequency distribution of two-day dichotomous forecast outcomes for three different event histories (i.e., event/event, no-event/event and event/no-event), and use it to highlight performance differences between forecasting methods. A trend is identified across all forecasting methods that a high/low forecast probability on day-1 remains high/low on day-2 even though flaring activity is transitioning. For M-class and larger flares, we find that explicitly including persistence or prior flare history in computing forecasts helps to improve overall forecast performance. It is also found that using magnetic/modern data leads to improvement in catching the first-event/first-no-event transitions. Finally, 15% of major (i.e., M-class or above) flare days over the testing interval were effectively missed due to a lack of observations from instruments away from the Earth-Sun line.
A workshop was recently held at Nagoya University (31 October - 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively
Solar flares are extremely energetic phenomena in our Solar System. Their impulsive, often drastic radiative increases, in particular at short wavelengths, bring immediate impacts that motivate solar physics and space weather research to understand s
Solar flares produce radiation which can have an almost immediate effect on the near-Earth environment, making it crucial to forecast flares in order to mitigate their negative effects. The number of published approaches to flare forecasting using ph
Disturbances in space weather can negatively affect several fields, including aviation and aerospace, satellites, oil and gas industries, and electrical systems, leading to economic and commercial losses. Solar flares are the most significant events
The EU funded the FLARECAST project, that ran from Jan 2015 until Feb 2018. FLARECAST had a R2O focus, and introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of