ﻻ يوجد ملخص باللغة العربية
Game theory is often used as a tool to analyze decentralized systems and their properties, in particular, blockchains. In this note, we take the opposite view. We argue that blockchains can and should be used to implement economic mechanisms because they can help to overcome problems that occur if trust in the mechanism designer cannot be assumed. Mechanism design deals with the allocation of resources to agents, often by extracting private information from them. Some mechanisms are immune to early information disclosure, while others may heavily depend on it. Some mechanisms have to randomize to achieve fairness and efficiency. Both issues, information disclosure, and randomness require trust in the mechanism designer. If there is no trust, mechanisms can be manipulated. We claim that mechanisms that use randomness or sequential information disclosure are much harder, if not impossible, to audit. Therefore, centralized implementation is often not a good solution. We consider some of the most frequently used mechanisms in practice and identify circumstances under which manipulation is possible. We propose a decentralized implementation of such mechanisms, that can be, in practical terms, realized by blockchain technology. Moreover, we argue in which environments a decentralized implementation of a mechanism brings a significant advantage.
We pose and study a fundamental algorithmic problem which we term mixture selection, arising as a building block in a number of game-theoretic applications: Given a function $g$ from the $n$-dimensional hypercube to the bounded interval $[-1,1]$, and
We study Bayesian automated mechanism design in unstructured dynamic environments, where a principal repeatedly interacts with an agent, and takes actions based on the strategic agents report of the current state of the world. Both the principal and
We describe a structured system for distributed mechanism design. It consists of a sequence of layers. The lower layers deal with the operations relevant for distributed computing only, while the upper layers are concerned only with communication amo
Nearly fifteen years ago, Google unveiled the generalized second price (GSP) auction. By all theoretical accounts including their own [Varian 14], this was the wrong auction --- the Vickrey-Clarke-Groves (VCG) auction would have been the proper choic
In the standard Mechanism Design framework (Hurwicz-Reiter), there is a central authority that gathers agents messages and subsequently determines the allocation and tax for each agent. We consider a scenario where, due to communication overhead an