ترغب بنشر مسار تعليمي؟ اضغط هنا

A Distributed Platform for Mechanism Design

666   0   0.0 ( 0 )
 نشر من قبل Krzysztof R. Apt
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a structured system for distributed mechanism design. It consists of a sequence of layers. The lower layers deal with the operations relevant for distributed computing only, while the upper layers are concerned only with communication among players, including broadcasting and multicasting, and distributed decision making. This yields a highly flexible distributed system whose specific applications are realized as instances of its top layer. This design supports fault-tolerance, prevents manipulations and makes it possible to implement distributed policing. The system is implemented in Java. We illustrate it by discussing a number of implemented examples.



قيم البحث

اقرأ أيضاً

In the standard Mechanism Design framework (Hurwicz-Reiter), there is a central authority that gathers agents messages and subsequently determines the allocation and tax for each agent. We consider a scenario where, due to communication overhead an d other constraints, such broadcasting of messages to a central authority cannot take place. Instead, only local message exchange is allowed between agents. As a result, each agent should be able to determine her own allocation and tax based on the messages in the local neighborhood, as defined by a given message graph describing the communication constraints. This scenario gives rise to a novel research direction that we call Distributed Mechanism Design. In this paper, we propose such a distributed mechanism for the problem of rate allocation in a multicast transmission network. The proposed mechanism fully implements the optimal allocation in Nash equilibria and its message space dimension is linear with respect to the number of agents in the network.
In the standard Mechanism Design framework, agents messages are gathered at a central point and allocation/tax functions are calculated in a centralized manner, i.e., as functions of all network agents messages. This requirement may cause communicati on and computation overhead and necessitates the design of mechanisms that alleviate this bottleneck. We consider a scenario where message transmission can only be performed locally so that the mechanism allocation/tax functions can be calculated in a decentralized manner. Each agent transmits messages to her local neighborhood, as defined by a given message-exchange network, and her allocation/tax functions are only functions of the available neighborhood messages. This scenario gives rise to a novel research problem that we call Distributed Mechanism Design. In this paper, we propose two distributed mechanisms for network utility maximization problems that involve private and public goods with competition and cooperation between agents. As a concrete example, we use the problems of rate allocation in networks with either unicast or multirate multicast transmission protocols. The proposed mechanism for each of the protocols fully implements the optimal allocation in Nash equilibria and its message space dimensionality scales linearly with respect to the number of agents in the network.
A distributed machine learning platform needs to recruit many heterogeneous worker nodes to finish computation simultaneously. As a result, the overall performance may be degraded due to straggling workers. By introducing redundancy into computation, coded machine learning can effectively improve the runtime performance by recovering the final computation result through the first $k$ (out of the total $n$) workers who finish computation. While existing studies focus on designing efficient coding schemes, the issue of designing proper incentives to encourage worker participation is still under-explored. This paper studies the platforms optimal incentive mechanism for motivating proper workers participation in coded machine learning, despite the incomplete information about heterogeneous workers computation performances and costs. A key contribution of this work is to summarize workers multi-dimensional heterogeneity as a one-dimensional metric, which guides the platforms efficient selection of workers under incomplete information with a linear computation complexity. Moreover, we prove that the optimal recovery threshold $k$ is linearly proportional to the participator number $n$ if we use the widely adopted MDS (Maximum Distance Separable) codes for data encoding. We also show that the platforms increased cost due to incomplete information disappears when worker number is sufficiently large, but it does not monotonically decrease in worker number.
Edge computing as a promising technology provides lower latency, more efficient transmission, and faster speed of data processing since the edge servers are closer to the user devices. Each edge server with limited resources can offload latency-sensi tive and computation-intensive tasks from nearby user devices. However, edge computing faces challenges such as resource allocation, energy consumption, security and privacy issues, etc. Auction mechanisms can well characterize bidirectional interactions between edge servers and user devices under the above constraints in edge computing. As demonstrated by the existing works, auction and mechanism design approaches are outstanding on achieving optimal allocation strategy while guaranteeing mutual satisfaction among edge servers and user devices, especially for scenarios with scarce resources. In this paper, we introduce a comprehensive survey of recent researches that apply auction approaches in edge computing. Firstly, a brief overview of edge computing including three common edge computing paradigms, i.e., cloudlet, fog computing and mobile edge computing, is presented. Then, we introduce fundamentals and backgrounds of auction schemes commonly used in edge computing systems. After then, a comprehensive survey of applications of auction-based approaches applied for edge computing is provided, which is categorized by different auction approaches. Finally, several open challenges and promising research directions are discussed.
On-line firms deploy suites of software platforms, where each platform is designed to interact with users during a certain activity, such as browsing, chatting, socializing, emailing, driving, etc. The economic and incentive structure of this exchang e, as well as its algorithmic nature, have not been explored to our knowledge. We model this interaction as a Stackelberg game between a Designer and one or more Agents. We model an Agent as a Markov chain whose states are activities; we assume that the Agents utility is a linear function of the steady-state distribution of this chain. The Designer may design a platform for each of these activities/states; if a platform is adopted by the Agent, the transition probabilities of the Markov chain are affected, and so is the objective of the Agent. The Designers utility is a linear function of the steady state probabilities of the accessible states minus the development cost of the platforms. The underlying optimization problem of the Agent -- how to choose the states for which to adopt the platform -- is an MDP. If this MDP has a simple yet plausible structure (the transition probabilities from one state to another only depend on the target state and the recurrent probability of the current state) the Agents problem can be solved by a greedy algorithm. The Designers optimization problem (designing a custom suite for the Agent so as to optimize, through the Agents optimum reaction, the Designers revenue), is NP-hard to approximate within any finite ratio; however, the special case, while still NP-hard, has an FPTAS. These results generalize from a single Agent to a distribution of Agents with finite support, as well as to the setting where the Designer must find the best response to the existing strategies of other Designers. We discuss other implications of our results and directions of future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا