ترغب بنشر مسار تعليمي؟ اضغط هنا

TRIPDECODER: Study Travel Time Attributes and Route Preferences of Metro Systems from Smart Card Data

331   0   0.0 ( 0 )
 نشر من قبل Xiancai Tian
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we target at recovering the exact routes taken by commuters inside a metro system that arenot captured by an Automated Fare Collection (AFC) system and hence remain unknown. We strategicallypropose two inference tasks to handle the recovering, one to infer the travel time of each travel link thatcontributes to the total duration of any trip inside a metro network and the other to infer the route preferencesbased on historical trip records and the travel time of each travel link inferred in the previous inferencetask. As these two inference tasks have interrelationship, most of existing works perform these two taskssimultaneously. However, our solutionTripDecoderadopts a totally different approach. To the best of ourknowledge,TripDecoderis the first model that points out and fully utilizes the fact that there are some tripsinside a metro system with only one practical route available. It strategically decouples these two inferencetasks by only taking those trip records with only one practical route as the input for the first inference taskof travel time and feeding the inferred travel time to the second inference task as an additional input whichnot only improves the accuracy but also effectively reduces the complexity of both inference tasks. Twocase studies have been performed based on the city-scale real trip records captured by the AFC systems inSingapore and Taipei to compare the accuracy and efficiency ofTripDecoderand its competitors. As expected,TripDecoderhas achieved the best accuracy in both datasets, and it also demonstrates its superior efficiencyand scalability.



قيم البحث

اقرأ أيضاً

340 - Juanjuan Zhao , Fan Zhang , Lai Tu 2016
Nowadays, metro systems play an important role in meeting the urban transportation demand in large cities. The understanding of passenger route choice is critical for public transit management. The wide deployment of Automated Fare Collection(AFC) sy stems opens up a new opportunity. However, only each trips tap-in and tap-out timestamp and stations can be directly obtained from AFC system records; the train and route chosen by a passenger are unknown, which are necessary to solve our problem. While existing methods work well in some specific situations, they dont work for complicated situations. In this paper, we propose a solution that needs no additional equipment or human involvement than the AFC systems. We develop a probabilistic model that can estimate from empirical analysis how the passenger flows are dispatched to different routes and trains. We validate our approach using a large scale data set collected from the Shenzhen metro system. The measured results provide us with useful inputs when building the passenger path choice model.
The metro system is playing an increasingly important role in the urban public transit network, transferring a massive human flow across space everyday in the city. In recent years, extensive research studies have been conducted to improve the servic e quality of metro systems. Among them, crowd management has been a critical issue for both public transport agencies and train operators. In this paper, by utilizing accumulated smart card data, we propose a statistical model to predict in-situ passenger density, i.e., number of on-board passengers between any two neighbouring stations, inside a closed metro system. The proposed model performs two main tasks: i) forecasting time-dependent Origin-Destination (OD) matrix by applying mature statistical models; and ii) estimating the travel time cost required by different parts of the metro network via truncated normal mixture distributions with Expectation-Maximization (EM) algorithm. Based on the prediction results, we are able to provide accurate prediction of in-situ passenger density for a future time point. A case study using real smart card data in Singapore Mass Rapid Transit (MRT) system demonstrate the efficacy and efficiency of our proposed method.
105 - Zhiyong Cui , Ying Long 2015
Existing studies have extensively used spatiotemporal data to discover the mobility patterns of various types of travellers. Smart card data (SCD) collected by the automated fare collection systems can reflect a general view of the mobility pattern o f public transit riders. Mobility patterns of transit riders are temporally and spatially dynamic, and therefore difficult to measure. However, few existing studies measure both the mobility and stability of transit riders travel patterns over a long period of time. To analyse the long-term changes of transit riders travel behaviour, the authors define a metric for measuring the similarity between SCD, in this study. Also an improved density-based clustering algorithm, simplified smoothed ordering points to identify the clustering structure (SS-OPTICS), to identify transit rider clusters is proposed. Compared to the original OPTICS, SS-OPTICS needs fewer parameters and has better generalisation ability. Further, the generated clusters are categorized according to their features of regularity and occasionality. Based on the generated clusters and categories, fine- and coarse-grained travel pattern transitions of transit riders over four years from 2010 to 2014 are measured. By combining socioeconomic data of Beijing in the year of 2010 and 2014, the interdependence between stability and mobility of transit riders travel behaviour is also discussed.
We address two shortcomings in online travel time estimation methods for congested urban traffic. The first shortcoming is related to the determination of the number of mixture modes, which can change dynamically, within day and from day to day. The second shortcoming is the wide-spread use of Gaussian probability densities as mixture components. Gaussian densities fail to capture the positive skew in travel time distributions and, consequently, large numbers of mixture components are needed for reasonable fitting accuracy when applied as mixture components. They also assign positive probabilities to negative travel times. To address these issues, this paper derives a mixture distribution with Gamma component densities, which are asymmetric and supported on the positive numbers. We use sparse estimation techniques to ensure parsimonious models and propose a generalization of Gamma mixture densities using Mittag-Leffler functions, which provides enhanced fitting flexibility and improved parsimony. In order to accommodate within-day variability and allow for online implementation of the proposed methodology (i.e., fast computations on streaming travel time data), we introduce a recursive algorithm which efficiently updates the fitted distribution whenever new data become available. Experimental results using real-world travel time data illustrate the efficacy of the proposed methods.
This paper analyzes consumer choices over lunchtime restaurants using data from a sample of several thousand anonymous mobile phone users in the San Francisco Bay Area. The data is used to identify users approximate typical morning location, as well as their choices of lunchtime restaurants. We build a model where restaurants have latent characteristics (whose distribution may depend on restaurant observables, such as star ratings, food category, and price range), each user has preferences for these latent characteristics, and these preferences are heterogeneous across users. Similarly, each item has latent characteristics that describe users willingness to travel to the restaurant, and each user has individual-specific preferences for those latent characteristics. Thus, both users willingness to travel and their base utility for each restaurant vary across user-restaurant pairs. We use a Bayesian approach to estimation. To make the estimation computationally feasible, we rely on variational inference to approximate the posterior distribution, as well as stochastic gradient descent as a computational approach. Our model performs better than more standard competing models such as multinomial logit and nested logit models, in part due to the personalization of the estimates. We analyze how consumers re-allocate their demand after a restaurant closes to nearby restaurants versus more distant restaurants with similar characteristics, and we compare our predictions to actual outcomes. Finally, we show how the model can be used to analyze counterfactual questions such as what type of restaurant would attract the most consumers in a given location.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا