ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating Heterogeneous Consumer Preferences for Restaurants and Travel Time Using Mobile Location Data

296   0   0.0 ( 0 )
 نشر من قبل Susan Athey
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper analyzes consumer choices over lunchtime restaurants using data from a sample of several thousand anonymous mobile phone users in the San Francisco Bay Area. The data is used to identify users approximate typical morning location, as well as their choices of lunchtime restaurants. We build a model where restaurants have latent characteristics (whose distribution may depend on restaurant observables, such as star ratings, food category, and price range), each user has preferences for these latent characteristics, and these preferences are heterogeneous across users. Similarly, each item has latent characteristics that describe users willingness to travel to the restaurant, and each user has individual-specific preferences for those latent characteristics. Thus, both users willingness to travel and their base utility for each restaurant vary across user-restaurant pairs. We use a Bayesian approach to estimation. To make the estimation computationally feasible, we rely on variational inference to approximate the posterior distribution, as well as stochastic gradient descent as a computational approach. Our model performs better than more standard competing models such as multinomial logit and nested logit models, in part due to the personalization of the estimates. We analyze how consumers re-allocate their demand after a restaurant closes to nearby restaurants versus more distant restaurants with similar characteristics, and we compare our predictions to actual outcomes. Finally, we show how the model can be used to analyze counterfactual questions such as what type of restaurant would attract the most consumers in a given location.



قيم البحث

اقرأ أيضاً

Landfall of a tropical cyclone is the event when it moves over the land after crossing the coast of the ocean. It is important to know the characteristics of the landfall in terms of location and time, well advance in time to take preventive measures timely. In this article, we develop a deep learning model based on the combination of a Convolutional Neural network and a Long Short-Term memory network to predict the landfalls location and time of a tropical cyclone in six ocean basins of the world with high accuracy. We have used high-resolution spacial reanalysis data, ERA5, maintained by European Center for Medium-Range Weather Forecasting (ECMWF). The model takes any 9 hours, 15 hours, or 21 hours of data, during the progress of a tropical cyclone and predicts its landfalls location in terms of latitude and longitude and time in hours. For 21 hours of data, we achieve mean absolute error for landfalls location prediction in the range of 66.18 - 158.92 kilometers and for landfalls time prediction in the range of 4.71 - 8.20 hours across all six ocean basins. The model can be trained in just 30 to 45 minutes (based on ocean basin) and can predict the landfalls location and time in a few seconds, which makes it suitable for real time prediction.
In this paper, we target at recovering the exact routes taken by commuters inside a metro system that arenot captured by an Automated Fare Collection (AFC) system and hence remain unknown. We strategicallypropose two inference tasks to handle the rec overing, one to infer the travel time of each travel link thatcontributes to the total duration of any trip inside a metro network and the other to infer the route preferencesbased on historical trip records and the travel time of each travel link inferred in the previous inferencetask. As these two inference tasks have interrelationship, most of existing works perform these two taskssimultaneously. However, our solutionTripDecoderadopts a totally different approach. To the best of ourknowledge,TripDecoderis the first model that points out and fully utilizes the fact that there are some tripsinside a metro system with only one practical route available. It strategically decouples these two inferencetasks by only taking those trip records with only one practical route as the input for the first inference taskof travel time and feeding the inferred travel time to the second inference task as an additional input whichnot only improves the accuracy but also effectively reduces the complexity of both inference tasks. Twocase studies have been performed based on the city-scale real trip records captured by the AFC systems inSingapore and Taipei to compare the accuracy and efficiency ofTripDecoderand its competitors. As expected,TripDecoderhas achieved the best accuracy in both datasets, and it also demonstrates its superior efficiencyand scalability.
83 - Yu-Chin Hsu , Ta-Cheng Huang , 2018
Unobserved heterogeneous treatment effects have been emphasized in the recent policy evaluation literature (see e.g., Heckman and Vytlacil, 2005). This paper proposes a nonparametric test for unobserved heterogeneous treatment effects in a treatment effect model with a binary treatment assignment, allowing for individuals self-selection to the treatment. Under the standard local average treatment effects assumptions, i.e., the no defiers condition, we derive testable model restrictions for the hypothesis of unobserved heterogeneous treatment effects. Also, we show that if the treatment outcomes satisfy a monotonicity assumption, these model restrictions are also sufficient. Then, we propose a modified Kolmogorov-Smirnov-type test which is consistent and simple to implement. Monte Carlo simulations show that our test performs well in finite samples. For illustration, we apply our test to study heterogeneous treatment effects of the Job Training Partnership Act on earnings and the impacts of fertility on family income, where the null hypothesis of homogeneous treatment effects gets rejected in the second case but fails to be rejected in the first application.
This paper discusses the problem of estimation and inference on the effects of time-varying treatment. We propose a method for inference on the effects treatment histories, introducing a dynamic covariate balancing method combined with penalized regr ession. Our approach allows for (i) treatments to be assigned based on arbitrary past information, with the propensity score being unknown; (ii) outcomes and time-varying covariates to depend on treatment trajectories; (iii) high-dimensional covariates; (iv) heterogeneity of treatment effects. We study the asymptotic properties of the estimator, and we derive the parametric convergence rate of the proposed procedure. Simulations and an empirical application illustrate the advantage of the method over state-of-the-art competitors.
The main goal of this paper is to develop a methodology for estimating time varying parameter vector auto-regression (TVP-VAR) models with a timeinvariant long-run relationship between endogenous variables and changes in exogenous variables. We propo se a Gibbs sampling scheme for estimation of model parameters as well as time-invariant long-run multiplier parameters. Further we demonstrate the applicability of the proposed method by analyzing examples of the Norwegian and Russian economies based on the data on real GDP, real exchange rate and real oil prices. Our results show that incorporating the time invariance constraint on the long-run multipliers in TVP-VAR model helps to significantly improve the forecasting performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا