ﻻ يوجد ملخص باللغة العربية
Adherent biological cells generate traction forces on a substrate that play a central role for migration, mechanosensing, differentiation, and collective behavior. The established method for quantifying this cell-substrate interaction is traction force microscopy (TFM). In spite of recent advancements, inference of the traction forces from measurements remains very sensitive to noise. However, suppression of the noise reduces the measurement accuracy and the spatial resolution, which makes it crucial to select an optimal level of noise reduction. Here, we present a fully automated method for noise reduction and robust, standardized traction-force reconstruction. The method, termed Bayesian Fourier transform traction cytometry, combines the robustness of Bayesian L2 regularization with the computation speed of Fourier transform traction cytometry. We validate the performance of the method with synthetic and real data. The method is made freely available as a software package with a graphical user-interface for intuitive usage.
Adherent cells exert traction forces on to their environment, which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures. This traction can be measured in a perturbation-free manner with traction force mi
Forest management relies on the evaluation of silviculture practices. The increase in natural risk due to climate change makes it necessary to consider evaluation criteria that take natural risk into account. Risk integration in existing software req
Atomic force microscopy (AFM) with molecule-functionalized tips has emerged as the primary experimental technique for probing the atomic structure of organic molecules on surfaces. Most experiments have been limited to nearly planar aromatic molecule
The phenomenological model for cell shape deformation and cell migration (Chen et.al. 2018; Vermolen and Gefen 2012) is extended with the incorporation of cell traction forces and the evolution of cell equilibrium shapes as a result of cell different
Common Spacial Patterns (CSP) is a widely used method to analyse electroencephalography (EEG) data, concerning the supervised classification of brains activity. More generally, it can be useful to distinguish between multivariate signals recorded dur