ﻻ يوجد ملخص باللغة العربية
Inertial particle data from three-dimensional direct numerical simulations of particle-laden homogeneous isotropic turbulence at high Reynolds number are analyzed using Voronoi tessellation of the particle positions, considering different Stokes numbers. A finite-time measure to quantify the divergence of the particle velocity by determining the volume change rate of the Voronoi cells is proposed. For inertial particles the probability distribution function (PDF) of the divergence deviates from that for fluid particles. Joint PDFs of the divergence and the Voronoi volume illustrate that the divergence is most prominent in cluster regions and less pronounced in void regions. For larger volumes the results show negative divergence values which represent cluster formation (i.e. particle convergence) and for small volumes the results show positive divergence values which represents cluster destruction/void formation (i.e. particle divergence). Moreover, when the Stokes number increases the divergence takes larger values, which gives some evidence why fine clusters are less observed for large Stokes numbers. Theoretical analyses further show that the divergence for random particles in random flow satisfies a PDF corresponding to the ratio of two independent variables following normal and gamma distributions in one dimension. Extending this model to three dimensions, the predicted PDF agrees reasonably well with Monte-Carlo simulations and DNS data of fluid particles.
Multiscale statistical analyses of inertial particle distributions are presented to investigate the statistical signature of clustering and void regions in particle-laden incompressible isotropic turbulence. Three-dimensional direct numerical simulat
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor
Using exact relations between velocity structure functions (Hill, Hill and Boratav, and Yakhot) and neglecting pressure contributions in a first approximation, we obtain a closed system and derive simple order-dependent rescaling relationships betwee
An essential ingredient of turbulent flows is the vortex stretching mechanism, which emanates from the non-linear interaction of vorticity and strain-rate tensor and leads to formation of extreme events. We analyze the statistical correlations betwee
Short term unpredictability is discovered numerically for high Reynolds number fluid flows under periodic boundary conditions. Furthermore, the abundance of the short term unpredictability is also discovered. These discoveries support our theory that