ﻻ يوجد ملخص باللغة العربية
Short term unpredictability is discovered numerically for high Reynolds number fluid flows under periodic boundary conditions. Furthermore, the abundance of the short term unpredictability is also discovered. These discoveries support our theory that fully developed turbulence is constantly driven by such short term unpredictability.
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor
Using exact relations between velocity structure functions (Hill, Hill and Boratav, and Yakhot) and neglecting pressure contributions in a first approximation, we obtain a closed system and derive simple order-dependent rescaling relationships betwee
An essential ingredient of turbulent flows is the vortex stretching mechanism, which emanates from the non-linear interaction of vorticity and strain-rate tensor and leads to formation of extreme events. We analyze the statistical correlations betwee
Inertial particle data from three-dimensional direct numerical simulations of particle-laden homogeneous isotropic turbulence at high Reynolds number are analyzed using Voronoi tessellation of the particle positions, considering different Stokes numb
Multiscale statistical analyses of inertial particle distributions are presented to investigate the statistical signature of clustering and void regions in particle-laden incompressible isotropic turbulence. Three-dimensional direct numerical simulat