ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectral localizer for semifinite spectral triples

102   0   0.0 ( 0 )
 نشر من قبل Hermann Schulz-Baldes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The notion of spectral localizer is extended to pairings with semifinite spectral triples. By a spectral flow argument, any semifinite index pairing is shown to be equal to the signature of the spectral localizer. As an application, a formula for the weak invariants of topological insulators is derived. This provides a new approach to their numerical evaluation.



قيم البحث

اقرأ أيضاً

Callias-type (or Dirac-Schrodinger) operators associated to abstract semifinite spectral triples are introduced and their indices are computed in terms of an associated index pairing derived from the spectral triple. The result is then interpreted as an index theorem for a non-commutative analogue of spectral flow. Both even and odd spectral triples are considered, and both commutative and non-commutative examples are given.
200 - A. Carey , V. Gayral , J. Phillips 2014
We prove two results about nonunital index theory left open by [CGRS2]. The first is that the spectral triple arising from an action of the reals on a C*-algebra with invariant trace satisfies the hypotheses of the nonunital local index formula. The second result concerns the meaning of spectral flow in the nonunital case. For the special case of paths arising from the odd index pairing for smooth spectral triples in the nonunital setting we are able to connect with earlier approaches to the analytic definition of spectral flow.
We study Riesz means of eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on a cylinder in dimension three. We obtain an inequality with a sharp leading term and an additional lower order term.
215 - P.J. Forrester , J. Grela 2015
The eigenvalues of the matrix structure $X + X^{(0)}$, where $X$ is a random Gaussian Hermitian matrix and $X^{(0)}$ is non-random or random independent of $X$, are closely related to Dyson Brownian motion. Previous works have shown how an infinite h ierarchy of equations satisfied by the dynamical correlations become triangular in the infinite density limit, and give rise to the complex Burgers equation for the Greens function of the corresponding one-point density function. We show how this and analogous partial differential equations, for chiral, circular and Jaco
161 - Andrey Badanin 2008
We consider the operator $H={d^4dt^4}+{ddt}p{ddt}+q$ with 1-periodic coefficients on the real line. The spectrum of $H$ is absolutely continuous and consists of intervals separated by gaps. We describe the spectrum of this operator in terms of the Ly apunov function, which is analytic on a two-sheeted Riemann surface. On each sheet the Lyapunov function has the standard properties of the Lyapunov function for the scalar case. We describe the spectrum of $H$ in terms of periodic, antiperiodic eigenvalues, and so-called resonances. We prove that 1) the spectrum of $H$ at high energy has multiplicity two, 2) the asymptotics of the periodic, antiperiodic eigenvalues and of the resonances are determined at high energy, 3) for some specific $p$ the spectrum of $H$ has an infinite number of gaps, 4) the spectrum of $H$ has small spectral band (near the beginner of the spectrum) with multiplicity 4 and its asymptotics are determined as $pto 0, q=0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا