ترغب بنشر مسار تعليمي؟ اضغط هنا

Indirect detection of Cosmological Constant from interacting open quantum system

82   0   0.0 ( 0 )
 نشر من قبل Sayantan Choudhury
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the indirect detection of Cosmological Constant from an open quantum system of interacting spins, weakly interacting with a thermal bath, a massless scalar field minimally coupled with the static de Sitter background, by computing the spectroscopic shifts. By assuming pairwise interaction between spins, we construct states using a generalisation of the superposition principle. The corresponding spectroscopic shifts, caused by the effective Hamiltonian of the system due to Casimir Polder interaction, are seen to play a crucial role in predicting a very tiny value of the Cosmological Constant, in the static patch of de Sitter space, which is consistent with the observed value from the Planck measurements of the cosmic microwave background (CMB) anisotropies.



قيم البحث

اقرأ أيضاً

We initiate the study of open quantum field theories using holographic methods. Specifically, we consider a quantum field theory (the system) coupled to a holographic field theory at finite temperature (the environment). We investigate the effects of integrating out the holographic environment with an aim of obtaining an effective dynamics for the resulting open quantum field theory. The influence functionals which enter this open effective action are determined by the real-time (Schwinger-Keldysh) correlation functions of the holographic thermal environment. To evaluate the latter, we exploit recent developments, wherein the semiclassical gravitational Schwinger-Keldysh saddle geometries were identified as complexified black hole spacetimes. We compute real-time correlation functions using holographic methods in these geometries, and argue that they lead to a sensible open effective quantum dynamics for the system in question, a question that hitherto had been left unanswered. In addition to shedding light on open quantum systems coupled to strongly correlated thermal environments, our results also provide a principled computation of Schwinger-Keldysh observables in gravity and holography. In particular, these influence functionals we compute capture both the dissipative physics of black hole quasinormal modes, as well as that of the fluctuations encoded in outgoing Hawking quanta, and interactions between them. We obtain results for these observables at leading order in a low frequency and momentum expansion in general dimensions, in addition to determining explicit results for two dimensional holographic CFT environments.
We probe the cosmological consequences of a recently proposed class of solutions to the cosmological constant problem. In these models, the universe undergoes a long period of inflation followed by a contraction and a bounce that sets the stage for t he hot big bang era. A requirement of any successful early universe model is that it must reproduce the observed scale-invariant density perturbations at CMB scales. While these class of models involve a long period of inflation, the inflationary Hubble scale during their observationally relevant stages is at or below the current Hubble scale, rendering the de Sitter fluctuations too weak to seed the CMB anisotropies. We show that sufficiently strong perturbations can still be sourced thermally if the relaxion field serving as the inflaton interacts with a thermal bath, which can be generated and maintained by the same interaction. We present a simple model where the relaxion field is derivatively (i.e. technically naturally) coupled to a non-abelian gauge sector, which gets excited tachyonically and subsequently thermalizes due to its nonlinear self-interactions. This model explains both the smallness of the cosmological constant and the amplitude of CMB anisotropies.
We introduce a novel method to circumvent Weinbergs no-go theorem for self-tuning the cosmological vacuum energy: a Lorentz-violating finite-temperature superfluid can counter the effects of an arbitrarily large cosmological constant. Fluctuations of the superfluid result in the graviton acquiring a Lorentz-violating mass and we identify a unique class of theories that are pathology free, phenomenologically viable, and do not suffer from instantaneous modes. This new and hitherto unidentified phase of massive gravity propagates the same degrees of freedom as general relativity with an additional Lorentz-violating scalar that is introduced by higher-derivative operators in a UV insensitive manner. The superfluid is therefore a consistent infrared modification of gravity. We demonstrate how the superfluid can degravitate a cosmological constant and discuss its phenomenology.
In this article, using the principles of Random Matrix Theory (RMT), we give a measure of quantum chaos by quantifying Spectral From Factor (SFF) appearing from the computation of two-point Out of Time Order Correlation function (OTOC) expressed in t erms of square of the commutator bracket of quantum operators which are separated in time. We also provide a strict model independent bound on the measure of quantum chaos, $-1/N(1-1/pi)leq {bf SFF}leq 0$ and $0leq {bf SFF}leq 1/pi N$, valid for thermal systems with a large and small number of degrees of freedom respectively. Based on the appropriate physical arguments we give a precise mathematical derivation to establish this alternative strict bound of quantum chaos.
109 - Janos Polonyi , Eniko Regos 2004
We argue that the instability of Euclidean Einstein gravity is an indication that the vacuum is non perturbative and contains a condensate of the metric tensor in a manner reminiscent of Yang-Mills theories. As a simple step toward the characterizati on of such a vacuum the value of the one-loop effective action is computed for Euclidean de Sitter spaces as a function of the curvature when the unstable conformal modes are held fixed. Two phases are found, one where the curvature is large and gravitons should be confined and another one which appears to be weakly coupled and tends to be flat. The induced cosmological constant is positive or negative in the strongly or weakly curved phase, respectively. The relevance of the Casimir effect in understanding the UV sensitivity of gravity is pointed out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا