ﻻ يوجد ملخص باللغة العربية
We initiate the study of open quantum field theories using holographic methods. Specifically, we consider a quantum field theory (the system) coupled to a holographic field theory at finite temperature (the environment). We investigate the effects of integrating out the holographic environment with an aim of obtaining an effective dynamics for the resulting open quantum field theory. The influence functionals which enter this open effective action are determined by the real-time (Schwinger-Keldysh) correlation functions of the holographic thermal environment. To evaluate the latter, we exploit recent developments, wherein the semiclassical gravitational Schwinger-Keldysh saddle geometries were identified as complexified black hole spacetimes. We compute real-time correlation functions using holographic methods in these geometries, and argue that they lead to a sensible open effective quantum dynamics for the system in question, a question that hitherto had been left unanswered. In addition to shedding light on open quantum systems coupled to strongly correlated thermal environments, our results also provide a principled computation of Schwinger-Keldysh observables in gravity and holography. In particular, these influence functionals we compute capture both the dissipative physics of black hole quasinormal modes, as well as that of the fluctuations encoded in outgoing Hawking quanta, and interactions between them. We obtain results for these observables at leading order in a low frequency and momentum expansion in general dimensions, in addition to determining explicit results for two dimensional holographic CFT environments.
I review the generating function for quantum-statistical mechanics, known as the Feynman-Vernon influence functional, the decoherence functional, or the Schwinger-Keldysh path integral. I describe a probability-conserving $ivarepsilon$ prescription f
We study the indirect detection of Cosmological Constant from an open quantum system of interacting spins, weakly interacting with a thermal bath, a massless scalar field minimally coupled with the static de Sitter background, by computing the spectr
We develop a truncated Hamiltonian method to study nonequilibrium real time dynamics in the Schwinger model - the quantum electrodynamics in D=1+1. This is a purely continuum method that captures reliably the invariance under local and global gauge t
Recent experimental developments in diverse areas - ranging from cold atomic gases over light-driven semiconductors to microcavity arrays - move systems into the focus, which are located on the interface of quantum optics, many-body physics and stati
We derive the general exact forms of the Wigner function, of mean values of conserved currents, of the spin density matrix, of the spin polarization vector and of the distribution function of massless particles for the free Dirac field at global ther