ﻻ يوجد ملخص باللغة العربية
We scrutinize the novel chiral transport phenomenon driven by spacetime torsion, namely the chiral torsional effect (CTE). We calculate the torsion-induced chiral currents with finite temperature, density and curvature in the most general torsional gravity theory. The conclusion complements the previous study on the CTE by including curvature and substantiates the relation between the CTE and the Nieh-Yan anomaly. We also analyze the response of chiral torsional current to an external electromagnetic field. The resulting topological current is analogous to that in the axion electrodynamics.
Gravity is perturbatively renormalizable for the physical states which can be conveniently defined via foliation-based quantization. In recent sequels, one-loop analysis was explicitly carried out for Einstein-scalar and Einstein-Maxwell systems. Var
We advance a novel method for the finite-temperature effective action for nonequilibrium quantum fields and find the QED effective action in time-dependent electric fields, where charged pairs evolve out of equilibrium. The imaginary part of the effe
We consider the theory of Rarita-Schwinger field interacting with a field with spin 1/2, in the case of finite temperature, chemical potential and vorticity, and calculate the chiral vortical effect for spin 3/2. We have clearly demonstrated the role
In this paper, we consider a family of $n$-dimensional, higher-curvature theories of gravity whose action is given by a series of dimensionally extended conformal invariants. The latter correspond to higher-order generalizations of the Branson $Q$-cu
We examine the near collapse dynamics of a self-gravitating magnetized electron gas at finite temperature, taken as the source of a Bianchi-I spacetime described by the Kasner metric. The set of Einstein-Maxwell field equations reduces to a complete