ﻻ يوجد ملخص باللغة العربية
We advance a novel method for the finite-temperature effective action for nonequilibrium quantum fields and find the QED effective action in time-dependent electric fields, where charged pairs evolve out of equilibrium. The imaginary part of the effective action consists of thermal loops of the Fermi-Dirac or Bose-Einstein distribution for the initial thermal ensemble weighted with factors for vacuum fluctuations. And the real part of the effective action is determined by the mean number of produced pairs, vacuum polarization, and thermal distribution. The mean number of produced pairs is equal to twice the imaginary part. We explicitly find the finite-temperature effective action in a constant electric field.
We find the Bogoliubov coefficient from the tunneling boundary condition on a charged particle coupled to a static electric field $E_0 sech^2 (z/L)$ and, using the regularization scheme in Phys. Rev. D 78, 105013 (2008), obtain the exact one-loop eff
We use the evolution operator method to find the Schwinger pair-production rate at finite temperature in scalar and spinor QED by counting the vacuum production, the induced production and the stimulated annihilation from the initial ensemble. It is
Here we analyze the finite temperature expectation values of the charge and current densities for a massive fermionic quantum field with nonzero chemical potential, $mu$, induced by a magnetic flux running along the axis of an idealized cosmic string
The quantum effective action yields equations of motion and correlation functions including all quantum corrections. We discuss here how it encodes also Noether currents at the full quantum level. This holds both for covariantly conserved currents as
The one-loop effective potential for gauge models in static de Sitter space at finite temperatures is computed by means of the $zeta$--function method. We found a simple relation which links the effective potentials of gauge and scalar fields at all