ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hybrid Approach Combining Control Theory and AI for Engineering Self-Adaptive Systems

81   0   0.0 ( 0 )
 نشر من قبل Thomas Vogel
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Control theoretical techniques have been successfully adopted as methods for self-adaptive systems design to provide formal guarantees about the effectiveness and robustness of adaptation mechanisms. However, the computational effort to obtain guarantees poses severe constraints when it comes to dynamic adaptation. In order to solve these limitations, in this paper, we propose a hybrid approach combining software engineering, control theory, and AI to design for software self-adaptation. Our solution proposes a hierarchical and dynamic system manager with performance tuning. Due to the gap between high-level requirements specification and the internal knob behavior of the managed system, a hierarchically composed components architecture seek the separation of concerns towards a dynamic solution. Therefore, a two-layered adaptive manager was designed to satisfy the software requirements with parameters optimization through regression analysis and evolutionary meta-heuristic. The optimization relies on the collection and processing of performance, effectiveness, and robustness metrics w.r.t control theoretical metrics at the offline and online stages. We evaluate our work with a prototype of the Body Sensor Network (BSN) in the healthcare domain, which is largely used as a demonstrator by the community. The BSN was implemented under the Robot Operating System (ROS) architecture, and concerns about the system dependability are taken as adaptation goals. Our results reinforce the necessity of performing well on such a safety-critical domain and contribute with substantial evidence on how hybrid approaches that combine control and AI-based techniques for engineering self-adaptive systems can provide effective adaptation.



قيم البحث

اقرأ أيضاً

AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image- and speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, ther e is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state of the art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
When faced with the task of designing and implementing a new self-aware and self-expressive computing system, researchers and practitioners need a set of guidelines on how to use the concepts and foundations developed in the Engineering Proprioceptio n in Computing Systems (EPiCS) project. This report provides such guidelines on how to design self-aware and self-expressive computing systems in a principled way. We have documented different categories of self-awareness and self-expression level using architectural patterns. We have also documented common architectural primitives, their possible candidate techniques and attributes for architecting self-aware and self-expressive systems. Drawing on the knowledge obtained from the previous investigations, we proposed a pattern driven methodology for engineering self-aware and self-expressive systems to assist in utilising the patterns and primitives during design. The methodology contains detailed guidance to make decisions with respect to the possible design alternatives, providing a systematic way to build self-aware and self-expressive systems. Then, we qualitatively and quantitatively evaluated the methodology using two case studies. The results reveal that our pattern driven methodology covers the main aspects of engineering self-aware and self-expressive systems, and that the resulted systems perform significantly better than the non-self-aware systems.
115 - Radu Calinescu 2017
Building on concepts drawn from control theory, self-adaptive software handles environmental and internal uncertainties by dynamically adjusting its architecture and parameters in response to events such as workload changes and component failures. Se lf-adaptive software is increasingly expected to meet strict functional and non-functional requirements in applications from areas as diverse as manufacturing, healthcare and finance. To address this need, we introduce a methodology for the systematic ENgineering of TRUstworthy Self-adaptive sofTware (ENTRUST). ENTRUST uses a combination of (1) design-time and runtime modelling and verification, and (2) industry-adopted assurance processes to develop trustworthy self-adaptive software and assurance cases arguing the suitability of the software for its intended application. To evaluate the effectiveness of our methodology, we present a tool-supported instance of ENTRUST and its use to develop proof-of-concept self-adaptive software for embedded and service-based systems from the oceanic monitoring and e-finance domains, respectively. The experimental results show that ENTRUST can be used to engineer self-adaptive software systems in different application domains and to generate dynamic assurance cases for these systems.
A self-adaptive system can modify its own structure and behavior at runtime based on its perception of the environment, of itself and of its requirements. To develop a self-adaptive system, software developers codify knowledge about the system and it s environment, as well as how adaptation actions impact on the system. However, the codified knowledge may be insufficient due to design time uncertainty, and thus a self-adaptive system may execute adaptation actions that do not have the desired effect. Online learning is an emerging approach to address design time uncertainty by employing machine learning at runtime. Online learning accumulates knowledge at runtime by, for instance, exploring not-yet executed adaptation actions. We address two specific problems with respect to online learning for self-adaptive systems. First, the number of possible adaptation actions can be very large. Existing online learning techniques randomly explore the possible adaptation actions, but this can lead to slow convergence of the learning process. Second, the possible adaptation actions can change as a result of system evolution. Existing online learning techniques are unaware of these changes and thus do not explore new adaptation actions, but explore adaptation actions that are no longer valid. We propose using feature models to give structure to the set of adaptation actions and thereby guide the exploration process during online learning. Experimental results involving four real-world systems suggest that considering the hierarchical structure of feature models may speed up convergence by 7.2% on average. Considering the differences between feature models before and after an evolution step may speed up convergence by 64.6% on average. [...]
The benefits that arise from the adoption of a systems engineering approach to the design of engineered systems are well understood and documented. However , with software systems, different approaches are required given the changeability of requirem ents and the malleability of software. With the design of industrial cyber-physical systems, one is confronted with the challenge of designing engineered systems that have a significant software component. Furthermore, that software component must be able to seamlessly interact with both the enterprises business systems and industrial systems. In this paper, we present Janus, which together with the GORITE BDI agent framework, provides a methodology for the design of agent-based industrial cyber-physical systems. Central to the Janus approach is the development of a logical architecture as in traditional systems engineering and then the allocation of the logical requirements to a BDI (Belief Desire Intention) agent architecture which is derived from the physical architecture for the system. Janus has its origins in product manufacturing; in this paper, we apply it to the problem of Fault Location, Isolation and Service Restoration (FLISR) for power substations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا