ترغب بنشر مسار تعليمي؟ اضغط هنا

Software Engineering for AI-Based Systems: A Survey

139   0   0.0 ( 0 )
 نشر من قبل Silverio Mart\\'inez-Fern\\'andez
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image- and speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state of the art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.



قيم البحث

اقرأ أيضاً

Many scientific and practical areas have shown increasing interest in reaping the benefits of blockchain technology to empower software systems. However, the unique characteristics and requirements associated with Blockchain Based Software (BBS) syst ems raise new challenges across the development lifecycle that entail an extensive improvement of conventional software engineering. This article presents a systematic literature review of the state-of-the-art in BBS engineering research from a software engineering perspective. We characterize BBS engineering from the theoretical foundations, processes, models, and roles and discuss a rich repertoire of key development activities, principles, challenges, and techniques. The focus and depth of this survey not only gives software engineering practitioners and researchers a consolidated body of knowledge about current BBS development but also underpins a starting point for further research in this field.
120 - Yanming Yang , Xin Xia , David Lo 2020
In 2006, Geoffrey Hinton proposed the concept of training Deep Neural Networks (DNNs) and an improved model training method to break the bottleneck of neural network development. More recently, the introduction of AlphaGo in 2016 demonstrated the pow erful learning ability of deep learning and its enormous potential. Deep learning has been increasingly used to develop state-of-the-art software engineering (SE) research tools due to its ability to boost performance for various SE tasks. There are many factors, e.g., deep learning model selection, internal structure differences, and model optimization techniques, that may have an impact on the performance of DNNs applied in SE. Few works to date focus on summarizing, classifying, and analyzing the application of deep learning techniques in SE. To fill this gap, we performed a survey to analyse the relevant studies published since 2006. We first provide an example to illustrate how deep learning techniques are used in SE. We then summarize and classify different deep learning techniques used in SE. We analyzed key optimization technologies used in these deep learning models, and finally describe a range of key research topics using DNNs in SE. Based on our findings, we present a set of current challenges remaining to be investigated and outline a proposed research road map highlighting key opportunities for future work.
170 - Kirill A Sorudeykin 2009
The main problems of Software Engineering appear as a result of incompatibilities. For example, the quality of organization of the production process depends on correspondence with existent resources and on a common understanding of project goals by all team members. Software design is another example. Its successfulness rides on the architectures conformity with a projects concepts. This is a point of great nicety. All elements should create a single space of interaction. And if the laws of such a space are imperfect, missequencing comes and the concept of a software system fails. We must do our best for this not to happen. To that end, having a subtle perception of systems structures is essential. Such knowledge can be based only on a fresh approach to the logical law.
Given the current transformative potential of research that sits at the intersection of Deep Learning (DL) and Software Engineering (SE), an NSF-sponsored community workshop was conducted in co-location with the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE19) in San Diego, California. The goal of this workshop was to outline high priority areas for cross-cutting research. While a multitude of exciting directions for future work were identified, this report provides a general summary of the research areas representing the areas of highest priority which were discussed at the workshop. The intent of this report is to serve as a potential roadmap to guide future work that sits at the intersection of SE & DL.
79 - Kyle E. Niemeyer 2019
This paper describes the motivation and design of a 10-week graduate course that teaches practices for developing research software; although offered by an engineering program, the content applies broadly to any field of scientific research where sof tware may be developed. Topics taught in the course include local and remote version control, licensing and copyright, structuring Python modules, testing and test coverage, continuous integration, packaging and distribution, open science, software citation, and reproducibility basics, among others. Lectures are supplemented by in-class activities and discussions, and all course material is shared openly via GitHub. Coursework is heavily based on a single, term-long project where students individually develop a software package targeted at their own research topic; all contributions must be submitted as pull requests and reviewed/merged by other students. The course was initially offered in Spring 2018 with 17 students enrolled, and will be taught again in Spring 2019.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا