ﻻ يوجد ملخص باللغة العربية
The relativistic mean field theory with the Greens function method is taken to study the single-particle resonant states. Different from our previous work [Phys.Rev.C 90,054321(2014)], the resonant states are identified by searching for the poles of Greens function or the extremes of the density of states. This new approach is very effective for all kinds of resonant states, no matter it is broad or narrow. The dependence on the space size for the resonant energies, widths, and the density distributions in the coordinate space has been checked and it is found very stable. Taking $^{120}$Sn as an example, four new broad resonant states $2g_{7/2}$, $2g_{9/2}$, $2h_{11/2}$ and $1j_{13/2}$ are observed, and also the accuracy for the width of the very narrow resonant state $1h_{9/2}$ is highly improved to be $1times 10^{-8}$ MeV. Besides, our results are very close to those by the complex momentum representation method and the complex scaling method.
Single-particle resonances in the continuum are crucial for studies of exotic nuclei. In this study, the Greens function approach is employed to search for single-particle resonances based on the relativistic-mean-field model. Taking $^{120}$Sn as an
To study the exotic odd nuclear systems, the self-consistent continuum Skyrme-Hartree-Fock-Bogoliubov theory formulated with Greens function technique is extended to include blocking effects with the equal filling approximation. Detailed formula are
We develop a complex scaling method for describing the resonances of deformed nuclei and present a theoretical formalism for the bound and resonant states on the same footing. With $^{31}$Ne as an illustrated example, we have demonstrated the utility
Shell corrections of the finite deformed Woods-Saxon potential are calculated using the Greens function method and the generalized Strutinsky smoothing procedure. They are compared with the results of the standard prescription which are affected by t
We present the fundamental techniques and working equations of many-body Greens function theory for calculating ground state properties and the spectral strength. Greens function methods closely relate to other polynomial scaling approaches discussed