ﻻ يوجد ملخص باللغة العربية
We develop a complex scaling method for describing the resonances of deformed nuclei and present a theoretical formalism for the bound and resonant states on the same footing. With $^{31}$Ne as an illustrated example, we have demonstrated the utility and applicability of the extended method and have calculated the energies and widths of low-lying neutron resonances in $^{31}$Ne. The bound and resonant levels in the deformed potential are in full agreement with those from the multichannel scattering approach. The width of the two lowest-lying resonant states shows a novel evolution with deformation and supports an explanation of the deformed halo for $^{31}$Ne.
The complex scaling method (CSM) is a useful similarity transformation of the Schrodinger equation, in which bound-state spectra are not changed but continuum spectra are separated into resonant and non-resonant continuum ones. Because the asymptotic
We study the resonance spectroscopy of the proton-rich nucleus 7B in the 4He+p+p+p cluster model. Many-body resonances are treated on the correct boundary condition as the Gamow states using the complex scaling method. We predict five resonances of 7
It is known that nuclear deformation plays an important role in inducing the halo structure in neutron-rich nuclei by mixing several angular momentum components. While previous theoretical studies on this problem in the literature assume axially symm
We present an analysis based on the deformed Quasi Particle Random Phase Approximation, on top of a deformed Hartree-Fock-Bogoliubov description of the ground state, aimed at studying the isoscalar monopole and quadrupole response in a deformed nucle
The consequences of the spontaneous breaking of rotational symmetry are investigated in a field theory model for deformed nuclei, based on simple separable interactions. The crucial role of the Ward-Takahashi identities to describe the rotational sta