ﻻ يوجد ملخص باللغة العربية
A two-dimensional simplicial complex is called $d$-{em regular} if every edge of it is contained in exactly $d$ distinct triangles. It is called $epsilon$-expanding if its up-down two-dimensional random walk has a normalized maximal eigenvalue which is at most $1-epsilon$. In this work, we present a class of bounded degree 2-dimensional expanders, which is the result of a small 2-complex action on a vertex set. The resulted complexes are fully transitive, meaning the automorphism group acts transitively on their faces. Such two-dimensional expanders are rare! Known constructions of such bounded degree two-dimensional expander families are obtained from deep algebraic reasonings (e.g. coset geometries). We show that given a small $d$-regular two-dimensional $epsilon$-expander, there exists an $epsilon=epsilon(epsilon)$ and a family of bounded degree two-dimensional simplicial complexes with a number of vertices goes to infinity, such that each complex in the family satisfies the following properties: * It is $4d$-regular. * The link of each vertex in the complex is the same regular graph (up to isomorphism). * It is $epsilon$ expanding. * It is transitive. The family of expanders that we get is explicit if the one-skeleton of the small complex is a complete multipartite graph, and it is random in the case of (almost) general $d$-regular complex. For the randomized construction, we use results on expanding generators in a product of simple Lie groups. This construction is inspired by ideas that occur in the zig-zag product for graphs. It can be seen as a loose two-dimensional analog of the replacement product.
In this work we present a new local to global criterion for proving a form of high dimensional expansion, which we term cosystolic expansion. Applying this criterion on Ramanujan complexes, yields for every dimension, an infinite family of bounded de
We present an elementary way to transform an expander graph into a simplicial complex where all high order random walks have a constant spectral gap, i.e., they converge rapidly to the stationary distribution. As an upshot, we obtain new construction
A graph $X$ is defined inductively to be $(a_0,dots,a_{n-1})$-regular if $X$ is $a_0$-regular and for every vertex $v$ of $X$, the sphere of radius $1$ around $v$ is an $(a_1,dots,a_{n-1})$-regular graph. Such a graph $X$ is said to be highly regular
We study regular graphs in which the random walks starting from a positive fraction of vertices have small mixing time. We prove that any such graph is virtually an expander and has no small separator. This answers a question of Pak [SODA, 2002]. As
Deterministic constructions of expander graphs have been an important topic of research in computer science and mathematics, with many well-studied constructions of infinite families of expanders. In some applications, though, an infinite family is n