ﻻ يوجد ملخص باللغة العربية
Deterministic constructions of expander graphs have been an important topic of research in computer science and mathematics, with many well-studied constructions of infinite families of expanders. In some applications, though, an infinite family is not enough: we need expanders which are close to each other. We study the following question: Construct an an infinite sequence of expanders $G_0,G_1,dots$, such that for every two consecutive graphs $G_i$ and $G_{i+1}$, $G_{i+1}$ can be obtained from $G_i$ by adding a single vertex and inserting/removing a small number of edges, which we call the expansion cost of transitioning from $G_i$ to $G_{i+1}$. This question is very natural, e.g., in the context of datacenter networks, where the vertices represent racks of servers, and the expansion cost captures the amount of rewiring needed when adding another rack to the network. We present an explicit construction of $d$-regular expanders with expansion cost at most $5d/2$, for any $dgeq 6$. Our construction leverages the notion of a 2-lift of a graph. This operation was first analyzed by Bilu and Linial, who repeatedly applied 2-lifts to construct an infinite family of expanders which double in size from one expander to the next. Our construction can be viewed as a way to interpolate between Bilu-Linial expanders with low expansion cost while preserving good edge expansion throughout. While our main motivation is centralized (datacenter networks), we also get the best-known distributed expander construction in the self-healing model.
We present an elementary way to transform an expander graph into a simplicial complex where all high order random walks have a constant spectral gap, i.e., they converge rapidly to the stationary distribution. As an upshot, we obtain new construction
In this paper we study expander graphs and their minors. Specifically, we attempt to answer the following question: what is the largest function $f(n,alpha,d)$, such that every $n$-vertex $alpha$-expander with maximum vertex degree at most $d$ contai
We construct an explicit family of 3XOR instances which is hard for $O(sqrt{log n})$ levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in determin
In this note we improve a recent result by Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi on solving the Unique Games problem on expanders. Given a $(1-varepsilon)$-satisfiable instance of Unique Games with the constraint graph $G$, our algorit
We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this defin