ﻻ يوجد ملخص باللغة العربية
Time and angular resolved photoelectron spectroscopy is a powerful technique to measure electron dynamics in solids. Recent advances in this technique have facilitated band and energy resolved observations of the effect that excited phonons, have on the electronic structure. Here, we show with the help of textit{ab initio} simulations that the Fourier analysis of time-resolved measurements of solids with excited phonon modes leads, in fact, to an observation of the band- and mode-resolved electron-phonon coupling directly from the experimental data and without need for theoretical computations.
Time-resolved Raman spectroscopy has been applied to probe the anharmonic coupling and electron-phonon interaction of optical phonons in graphite. From the decay of the transient anti-Stokes scattering of the G-mode following ultrafast excitation, we
The role of reduced dimensionality and of the surface on electron-phonon (e-ph) coupling in silicon nanowires is determined from first principles. Surface termination and chemistry is found to have a relatively small influence, whereas reduced dimens
We have studied the O 2p valence-band structure of Nb-doped SrTiO3, in which a dilute concentration of electrons are doped into the d0 band insulator, by angle-resolved photoemission spectroscopy (ARPES) measurements. We found that ARPES spectra at t
We investigate the ultrafast response of the bismuth (111) surface by means of time resolved photoemission spectroscopy. The direct visualization of the electronic structure allows us to gain insights on electron-electron and electron-phonon interact
Vacancy centers in diamond have proven to be a viable solid-state platform for quantum coherent opto-electronic applications. Among the variety of vacancy centers, silicon-vacancy (SiV) centers have recently attracted much attention as an inversion-s