ﻻ يوجد ملخص باللغة العربية
The CHAOS project is building a large database of LBT H II region spectra in nearby spiral galaxies to use direct abundances to better determine the dispersion in metallicity as a function of galactic radius. Here, we present CHAOS LBT observations of C II $lambda$4267 emission detected in 10 H II regions in M 101, and, using a new photoionization model based ionization correction factor, we convert these measurements into total carbon abundances. A comparison with M101 C II recombination line observations from the literature shows excellent agreement, and we measure a relatively steep gradient in log(C/H) of -0.37 +/- 0.06 dex/R_e. The C/N observations are consistent with a constant value of log(C/N) = 0.84 with a dispersion of only 0.09 dex, which, given the different nucleosynthetic sources of C and N, is challenging to understand. We also note that when plotting N/O versus O/H, all of the H II regions with detections of CII $lambda$4267 present N/O abundances at the minimum of the scatter in N/O at a given value of O/H. If the high surface brightness necessary for the detection of the faint recombination lines is interpreted as an indicator of H II region youth, then this may point to a lack of nitrogen pollution in the youngest H II regions. In the future, we anticipate that the CHAOS project will significantly increase the total number of C II $lambda$4267 measurements in extragalactic H II regions.
Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally-excited forbidden lines (CELs). The origins of this abundance discre
The CHemical Abundances of Spirals (CHAOS) project leverages the combined power of the Large Binocular Telescope with the broad spectral range and sensitivity of the Multi Object Double Spectrograph (MODS) to measure direct abundances in large sample
We report the direct abundances for the galaxy NGC 2403 as observed by the CHemical Abundances Of Spirals (CHAOS) project. Using the Multi-Object Double Spectrograph on the Large Binocular Telescope, we observe two fields with H II regions that cover
Carbon radio recombination lines (RRLs) at low frequencies (<=500 MHz) trace the cold, diffuse phase of the interstellar medium, which is otherwise difficult to observe. We present the detection of carbon RRLs in absorption in M82 with LOFAR in the f
We present new Jansky Very Large Array (VLA) images of the central region of the W49A star-forming region at 3.6~cm and at 7~mm at resolutions of 0farcs15 (1650 au) and 0farcs04 (440 au), respectively. The 3.6~cm data reveal new morphological detail